main.rs 67.8 KB
Newer Older
1
use clap::{Parser, ValueEnum};
Nicolas Patry's avatar
Nicolas Patry committed
2
3
4
5
use hf_hub::{
    api::sync::{Api, ApiBuilder},
    Repo, RepoType,
};
6
7
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
8
use regex::Regex;
9
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
10
use std::env;
11
use std::ffi::OsString;
12
use std::io::{BufRead, BufReader};
13
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
15
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16
17
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
18
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19
20
21
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
22
23
24
25
use std::{
    fs, io,
    io::{Read, Write},
};
26
use thiserror::Error;
27
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
28

29
mod env_runtime;
30
mod gpu;
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
fn get_config(
    model_id: &str,
    revision: &Option<String>,
) -> Result<Config, Box<dyn std::error::Error>> {
    let mut path = std::path::Path::new(model_id).to_path_buf();
    let model_id = model_id.to_string();
    let filename = if !path.exists() {
        // Assume it's a hub id

        let api = if let Ok(token) = std::env::var("HF_TOKEN") {
            // env variable has precedence over on file token.
            ApiBuilder::new().with_token(Some(token)).build()?
        } else {
            Api::new()?
        };
        let repo = if let Some(ref revision) = revision {
            api.repo(Repo::with_revision(
                model_id,
                RepoType::Model,
                revision.to_string(),
            ))
        } else {
            api.model(model_id)
        };
        repo.get("config.json")?
    } else {
        path.push("config.json");
        path
    };

    let content = std::fs::read_to_string(filename)?;
    let config: RawConfig = serde_json::from_str(&content)?;

    let config: Config = config.into();
    Ok(config)
}

fn resolve_attention(config: &Option<Config>, lora_adapters: &Option<String>) -> (String, String) {
70
    let compute_capability = gpu::get_cuda_capability();
71
    let mut prefix_caching: Option<String> = std::env::var("PREFIX_CACHING").ok();
72
73
74
75
76
77
78
79
80
81
82
    let mut attention: Option<String> = std::env::var("ATTENTION").ok();
    if let Some(config) = config {
        if prefix_caching.is_none() {
            if config.vision_config.is_some() {
                tracing::info!("Disabling prefix caching because of VLM model");
                prefix_caching = Some("0".to_string());
            } else if config.is_encoder_decoder {
                tracing::info!("Disabling prefix caching because of seq2seq model");
                prefix_caching = Some("0".to_string());
            }
        }
83
84
85
86
87
88
89

        let fallback_attention = if matches!(compute_capability, Some((major, _)) if major < 8) {
            "paged"
        } else {
            "flashdecoding"
        };

90
91
92
93
94
95
96
        match config.head_dim {
            Some(h) if h == 64 || h == 128 || h == 256 => {
                if lora_adapters.is_some() && prefix_caching.is_none() {
                    tracing::info!("Disabling prefix caching because of lora adapters");
                    prefix_caching = Some("0".to_string());
                }
                match config.model_type.as_deref() {
Daniël de Kok's avatar
Daniël de Kok committed
97
                    Some("falcon") | Some("deepseek_v2") => {
98
99
100
101
                        // Required because gemma2 needs bfloat16 which is not supported by
                        // flashinfer ?
                        if attention.is_none() {
                            tracing::info!(
102
                                "Forcing attention to '{fallback_attention}' because model {} requires it",
103
104
                                config.model_type.as_ref().unwrap()
                            );
105
106
107
108
109
                            attention = Some(fallback_attention.to_string());
                        }
                        if fallback_attention == "paged" && prefix_caching.is_none() {
                            tracing::info!("Disabling prefix caching because it is not supported with 'paged' attention");
                            prefix_caching = Some("0".to_string());
110
111
112
113
114
115
116
117
                        }
                    }
                    Some("t5") => {}
                    _ => {}
                }
            }
            _ => {
                if attention.is_none() {
118
119
                    tracing::info!("Forcing attention to '{fallback_attention}' because head dim is not supported by flashinfer, also disabling prefix caching");
                    attention = Some(fallback_attention.to_string());
120
121
122
123
124
125
126
                }
                if prefix_caching.is_none() {
                    prefix_caching = Some("0".to_string());
                }
            }
        }
    }
127
128
129
130
    if attention == Some("paged".to_string()) && prefix_caching.is_none() {
        tracing::info!("Disabling prefix caching on paged attention");
        prefix_caching = Some("0".to_string());
    }
131

132
    let attention = attention.unwrap_or("flashinfer".to_string());
133
134
    let prefix_caching = prefix_caching.unwrap_or("true".to_string());

135
136
137
    (prefix_caching, attention)
}

138
#[derive(Deserialize)]
139
struct RawConfig {
140
    max_position_embeddings: Option<usize>,
141
    n_positions: Option<usize>,
142
    model_type: Option<String>,
143
    max_seq_len: Option<usize>,
144
    quantization_config: Option<QuantizationConfig>,
145
146
147
148
149
150
    n_embd: Option<usize>,
    hidden_size: Option<usize>,
    num_attention_heads: Option<usize>,
    head_dim: Option<usize>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: Option<bool>,
151
152
153
154
155
}

#[derive(Deserialize)]
struct QuantizationConfig {
    quant_method: Option<Quantization>,
156
157
}

158
159
160
#[derive(Deserialize)]
struct VisionConfig {}

161
162
163
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
164
    quantize: Option<Quantization>,
165
166
167
168
    head_dim: Option<usize>,
    model_type: Option<String>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: bool,
169
170
171
172
173
174
175
176
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
177
        let quantize = other.quantization_config.and_then(|q| q.quant_method);
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        let head_dim = other.head_dim.or_else(|| {
            match (other.hidden_size, other.n_embd, other.num_attention_heads) {
                (Some(hidden_size), _, Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                // Legacy
                (_, Some(hidden_size), Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                _ => None,
            }
        });
        let model_type = other.model_type;
        let vision_config = other.vision_config;
        let is_encoder_decoder = other.is_encoder_decoder.unwrap_or(false);
197
198
        Config {
            max_position_embeddings,
199
            quantize,
200
201
202
203
            head_dim,
            model_type,
            vision_config,
            is_encoder_decoder,
204
205
206
207
        }
    }
}

208
209
#[derive(Clone, Copy, Debug, ValueEnum, Deserialize)]
#[serde(rename_all = "kebab-case")]
210
enum Quantization {
211
    /// 4 bit quantization. Requires a specific AWQ quantized model:
212
    ///   <https://hf.co/models?search=awq>.
213
    /// Should replace GPTQ models wherever possible because of the better latency
214
    Awq,
215
216
    /// Compressed tensors, which can be a mixture of different quantization methods.
    CompressedTensors,
217
218
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
219
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
220
    Eetq,
221
222
223
224
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
225
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
226
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
227
228
229
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
230
231
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
232
233
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
234
235
236
237
    // #[deprecated(
    //     since = "1.1.0",
    //     note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    // )]
238
    Bitsandbytes,
239
240
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
241
    BitsandbytesNf4,
242
243
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
244
    BitsandbytesFp4,
Nicolas Patry's avatar
Nicolas Patry committed
245
246
247
248
249
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
250
251
252
253
254
255
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
256
257
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
258
259
260
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
261
            Quantization::BitsandbytesNf4 => {
Nicolas Patry's avatar
Nicolas Patry committed
262
263
                write!(f, "bitsandbytes-nf4")
            }
264
            Quantization::BitsandbytesFp4 => {
Nicolas Patry's avatar
Nicolas Patry committed
265
266
                write!(f, "bitsandbytes-fp4")
            }
267
268
269
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
270
271
272
            Quantization::Gptq => {
                write!(f, "gptq")
            }
273
274
275
            Quantization::Marlin => {
                write!(f, "marlin")
            }
276
277
278
            Quantization::Awq => {
                write!(f, "awq")
            }
279
280
281
            Quantization::CompressedTensors => {
                write!(f, "compressed-tensors")
            }
282
283
284
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
285
286
287
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
288
289
290
291
        }
    }
}

292
293
294
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
295
    #[clap(name = "bfloat16")]
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

313
314
#[derive(Clone, Copy, Debug, ValueEnum)]
enum KVCacheDtype {
315
316
317
    #[clap(name = "fp8_e4m3fn")]
    Fp8e4m3fn,

318
319
320
321
322
323
324
    #[clap(name = "fp8_e5m2")]
    Fp8e5m2,
}

impl std::fmt::Display for KVCacheDtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
325
326
327
            KVCacheDtype::Fp8e4m3fn => {
                write!(f, "fp8_e4m3fn")
            }
328
329
330
331
332
333
334
            KVCacheDtype::Fp8e5m2 => {
                write!(f, "fp8_e5m2")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#[derive(Clone, Copy, Debug, ValueEnum)]
pub enum UsageStatsLevel {
    /// Default option, usage statistics are collected anonymously
    On,
    /// Disables all collection of usage statistics
    Off,
    /// Doesn't send the error stack trace or error type, but allows sending a crash event
    NoStack,
}

impl std::fmt::Display for UsageStatsLevel {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            UsageStatsLevel::On => {
                write!(f, "on")
            }
            UsageStatsLevel::Off => {
                write!(f, "off")
            }
            UsageStatsLevel::NoStack => {
                write!(f, "no-stack")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
382
383
384
385
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
386
387
388
389
390
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
391
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
392
    model_id: String,
393
394
395

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
396
    #[clap(long, env)]
397
    revision: Option<String>,
398

399
400
401
402
403
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

404
    /// Whether to shard the model across multiple GPUs
405
406
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
407
408
    #[clap(long, env)]
    sharded: Option<bool>,
409
410

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
411
412
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
413
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
414
415
    #[clap(long, env)]
    num_shard: Option<usize>,
416

417
418
419
420
421
    /// Quantization method to use for the model. It is not necessary to specify this option
    /// for pre-quantized models, since the quantization method is read from the model
    /// configuration.
    ///
    /// Marlin kernels will be used automatically for GPTQ/AWQ models.
422
423
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
424

Nicolas Patry's avatar
Nicolas Patry committed
425
426
427
428
429
430
431
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

432
433
434
435
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

436
437
    /// Specify the dtype for the key-value cache. When this option is not provided,
    /// the dtype of the model is used (typically `float16` or `bfloat16`). Currently
438
    /// the only supported value are `fp8_e4m3fn` and `fp8_e5m2` on CUDA.
439
440
441
    #[clap(long, env, value_enum)]
    kv_cache_dtype: Option<KVCacheDtype>,

442
443
444
445
446
447
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

448
449
450
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
451
452
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
453
454
455
456

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
457
458
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
459
460
461
462
463
464

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
465
466
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
467

Nicolas Patry's avatar
Nicolas Patry committed
468
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
469
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
470
471
472
473
474
475
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

476
477
478
479
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
480
    /// Default to min(max_allocatable, max_position_embeddings) - 1
481
482
483
484
485
486
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
487
488
489
490
491
492
493
494
495

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
496
    /// Default to min(max_allocatable, max_position_embeddings)
497
498
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
499
500
501
502
503
504
505
506
507
508
509

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
510
    #[clap(default_value = "0.3", long, env)]
511
    waiting_served_ratio: f32,
512

513
514
515
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
516
517
518
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
519

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
537
538
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
557
558
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
559

560
561
562
563
564
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

565
566
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
567
568
569
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
570

571
572
573
574
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

575
    /// The port to listen on.
576
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
577
    port: u16,
578
579
580

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
581
582
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
583
584

    /// The address the master shard will listen on. (setting used by torch distributed)
585
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
586
    master_addr: String,
587
588

    /// The address the master port will listen on. (setting used by torch distributed)
589
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
590
    master_port: usize,
591
592
593

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
594
    #[clap(long, env)]
595
    huggingface_hub_cache: Option<String>,
596
597
598

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
599
600
    #[clap(long, env)]
    weights_cache_override: Option<String>,
601
602
603
604
605

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
606
    #[clap(long, env)]
607
    disable_custom_kernels: bool,
608

609
610
611
612
613
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

634
    /// Outputs the logs in JSON format (useful for telemetry)
635
    #[clap(long, env)]
636
    json_output: bool,
637

638
639
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
640

641
642
643
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

644
645
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
646
647
648
649

    #[clap(long, env)]
    api_key: Option<String>,

650
651
652
653
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
654

655
656
657
658
659
660
661
662
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

663
    /// ngrok edge
664
    #[clap(long, env)]
665
    ngrok_edge: Option<String>,
666

667
668
669
670
671
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
672
673
674
675
676
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

677
678
679
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
680
681
682
683

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
drbh's avatar
drbh committed
684
685
686
687
688

    /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
    /// startup that will be available to callers via the `adapter_id` field in a request.
    #[clap(long, env)]
    lora_adapters: Option<String>,
689

690
691
692
693
694
    /// Control if anonymous usage stats are collected.
    /// Options are "on", "off" and "no-stack"
    /// Defaul is on.
    #[clap(default_value = "on", long, env)]
    usage_stats: UsageStatsLevel,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
695
696
}

697
698
699
#[derive(Debug)]
enum ShardStatus {
    Ready,
700
    Failed(usize),
701
}
702

703
704
705
706
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
707
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
708
    speculate: Option<usize>,
709
    dtype: Option<Dtype>,
710
    kv_cache_dtype: Option<KVCacheDtype>,
711
    trust_remote_code: bool,
712
713
714
715
716
717
718
719
720
721
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
722
    cuda_graphs: Vec<usize>,
723
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
724
725
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
726
    max_total_tokens: Option<usize>,
727
    max_batch_size: Option<usize>,
728
    max_input_tokens: Option<usize>,
drbh's avatar
drbh committed
729
    lora_adapters: Option<String>,
730
    otlp_endpoint: Option<String>,
731
    otlp_service_name: String,
732
    log_level: LevelFilter,
733
    status_sender: mpsc::Sender<ShardStatus>,
734
    shutdown: Arc<AtomicBool>,
735
736
    _shutdown_sender: mpsc::Sender<()>,
) {
737
738
739
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

740
741
742
743
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
744
745
746
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
747
748

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
749
    let mut shard_args = vec![
750
751
752
753
754
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
755
        log_level.to_string().to_uppercase(),
756
757
758
        "--json-output".to_string(),
    ];

759
760
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
761
        shard_args.push("--trust-remote-code".to_string());
762
763
    }

764
765
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
766
        shard_args.push("--sharded".to_string());
767
768
    }

769
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
770
771
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
772
    }
773

Nicolas Patry's avatar
Nicolas Patry committed
774
775
776
777
778
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

779
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
780
781
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
782
783
    }

784
785
786
787
788
    if let Some(kv_cache_dtype) = kv_cache_dtype {
        shard_args.push("--kv-cache-dtype".to_string());
        shard_args.push(kv_cache_dtype.to_string())
    }

789
790
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
791
792
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
793
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
794

Nicolas Patry's avatar
Nicolas Patry committed
795
796
797
798
799
800
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
801

802
    // OpenTelemetry Endpoint
803
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
804
805
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
806
807
    }

808
809
810
811
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

812
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
813
814
815
816
    if let Some(max_input_tokens) = max_input_tokens {
        shard_args.push("--max-input-tokens".to_string());
        shard_args.push(max_input_tokens.to_string());
    }
817

818
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
819
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
820

821
822
823
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

824
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
825
826
827
828
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
829
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
830

831
832
833
834
835
836
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

837
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
838
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
839

840
841
842
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

843
844
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
845
    envs.push((
846
847
848
849
850
851
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
852
        envs.push(("HF_TOKEN".into(), api_token.into()))
853
854
    };

Nicolas Patry's avatar
Nicolas Patry committed
855
856
857
858
859
860
861
862
863
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

864
865
866
867
868
869
    if let Some(max_total_tokens) = max_total_tokens {
        envs.push((
            "MAX_TOTAL_TOKENS".into(),
            max_total_tokens.to_string().into(),
        ));
    }
870
871
872
873
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

drbh's avatar
drbh committed
874
875
876
877
878
    // Lora Adapters
    if let Some(lora_adapters) = lora_adapters {
        envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
    }

879
880
881
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
882
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
883
884
885
886
887
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
888
        envs.push((
889
890
891
892
893
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

894
    // Enable experimental support for cuda graphs
895
896
897
898
899
900
901
902
903
904
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
905
906
    }

907
908
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
909
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
910
911
912
913
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
914
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
915
916
917
918
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
919
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
920
921
922
    }

    // Start process
923
    tracing::info!("Starting shard");
924
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
925
        .args(shard_args)
926
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
927
        .envs(envs)
928
        .stdin(Stdio::piped())
929
930
931
932
933
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
934
935
        Ok(p) => p,
        Err(err) => {
936
937
938
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
939
940
            }
            {
941
                tracing::error!("{}", err);
942
            }
943

944
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
945
946
947
948
949
            return;
        }
    };

    // Redirect STDOUT to the console
950
    let mut pstdin = p.stdin.take().unwrap();
951
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
952
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
953

954
    //stdout tracing thread
955
    thread::spawn(move || {
956
        log_lines(shard_stdout_reader);
957
    });
958
959
960
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
961
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
962
963
964
            err_sender.send(line).unwrap_or(());
        }
    });
965
    // We read stdin in another thread as it seems that lines() can block in some cases
Nicolas Patry's avatar
Nicolas Patry committed
966
967
968
969
970
971
972
973
974
    if LevelFilter::current() >= tracing::Level::DEBUG {
        thread::spawn(move || {
            let mut stdin = io::stdin(); // We get `Stdin` here.
            loop {
                let mut buffer = vec![0; 4096];
                if let Ok(n) = stdin.read(&mut buffer) {
                    if n > 0 {
                        let _ = pstdin.write_all(&buffer[..n]);
                    }
975
976
                }
            }
Nicolas Patry's avatar
Nicolas Patry committed
977
978
        });
    }
979
980
981
982
983
984

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
985
        if let Some(exit_status) = p.try_wait().unwrap() {
986
987
988
989
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
990

991
            tracing::error!("Shard complete standard error output:\n{err}");
992

993
            if let Some(signal) = exit_status.signal() {
994
995
996
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

997
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
998
999
1000
1001
            return;
        }

        // We received a shutdown signal
1002
        if shutdown.load(Ordering::SeqCst) {
1003
            terminate("shard", p, Duration::from_secs(90)).unwrap();
1004
1005
1006
1007
1008
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
1009
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
1010
1011
1012
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
1013
            tracing::info!("Waiting for shard to be ready...");
1014
1015
1016
1017
1018
1019
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

1020
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
1021
1022
1023
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
1024
    shutdown.store(true, Ordering::SeqCst);
1025
1026
1027
1028
1029
1030
1031

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
1032
1033
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
1034
1035
1036
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
1037
        },
1038
    };
1039
1040
    let n_devices = devices.split(',').count();
    Some(n_devices)
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
1074
1075
1076
1077
1078
1079
1080
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
1081
1082
1083
1084
        }
    }
}

1085
impl TryFrom<&[u8]> for PythonLogMessage {
1086
1087
    type Error = serde_json::Error;

1088
1089
    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        serde_json::from_slice::<Self>(value)
1090
1091
1092
    }
}

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
fn log_lines<R: Sized + Read>(mut bufread: BufReader<R>) {
    let mut buffer = vec![0u8; 8 * 4096];
    let mut stdout = std::io::stdout();
    loop {
        let n = bufread.read(&mut buffer);
        if let Ok(n) = n {
            if n > 0 {
                let mut lines = buffer[..n].split(|i| *i == b'\n').peekable();
                while let Some(line) = lines.next() {
                    match PythonLogMessage::try_from(line) {
                        Ok(log) => log.trace(),
                        // For interactive debugging ?
                        Err(_) => {
1106
1107
1108
1109
1110
1111
                            if LevelFilter::current() >= tracing::Level::DEBUG {
                                stdout.write_all(line).unwrap();
                                if lines.peek().is_some() {
                                    stdout.write_all(b"\n").unwrap();
                                }
                                stdout.flush().unwrap();
1112
1113
1114
1115
                            }
                        }
                    }
                }
1116
1117
            } else {
                break;
1118
            }
1119
1120
1121
1122
        }
    }
}

1123
1124
1125
1126
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
1127
1128
1129
1130
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
1131
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
1132
            let n_devices = num_cuda_devices()
1133
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
1134
            if n_devices <= 1 {
1135
1136
1137
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
1138
            }
1139
            n_devices
1140
        }
1141
1142
1143
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
1144
1145
1146
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
1147
1148
            }
            num_shard
1149
        }
1150
1151
1152
1153
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
1154
    };
1155
    if num_shard < 1 {
1156
1157
1158
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
1159
    }
1160
    Ok(num_shard)
1161
}
1162

1163
#[derive(Debug, Error)]
1164
enum LauncherError {
1165
    #[error("Invalid argument: {0}")]
1166
    ArgumentValidation(String),
1167
    #[error("not enough cuda devices: {0}")]
1168
    NotEnoughCUDADevices(String),
1169
    #[error("Download error")]
1170
    DownloadError,
1171
    #[error("Shard cannot start")]
1172
    ShardCannotStart,
1173
    #[error("Shard disconnected")]
1174
    ShardDisconnected,
1175
    #[error("Shard failed")]
1176
    ShardFailed,
1177
    #[error("Webserver failed")]
1178
    WebserverFailed,
1179
    #[error("Webserver cannot start")]
1180
1181
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1182

1183
1184
1185
1186
1187
1188
1189
1190
fn download_convert_model(
    model_id: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
    huggingface_hub_cache: Option<&str>,
    weights_cache_override: Option<&str>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
1191
1192
1193
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
1194
    let mut download_args = vec![
1195
        "download-weights".to_string(),
1196
        model_id.to_string(),
1197
1198
1199
1200
1201
1202
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
1203

1204
    // Model optional revision
1205
    if let Some(revision) = &revision {
OlivierDehaene's avatar
OlivierDehaene committed
1206
1207
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
1208
    }
1209

1210
    // Trust remote code for automatic peft fusion
1211
    if trust_remote_code {
1212
1213
1214
        download_args.push("--trust-remote-code".to_string());
    }

1215
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1216
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1217

1218
1219
1220
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

1221
1222
1223
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

1224
    // If huggingface_hub_cache is set, pass it to the download process
1225
    // Useful when running inside a docker container
1226
    if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
1227
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
1228
    };
1229

1230
1231
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
1232
    envs.push((
1233
1234
1235
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
1236

1237
1238
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1239
        envs.push(("HF_TOKEN".into(), api_token.into()))
1240
    };
1241

1242
1243
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
1244
    if let Some(weights_cache_override) = &weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
1245
        envs.push((
1246
1247
1248
1249
1250
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

1251
    // Start process
1252
    tracing::info!("Starting check and download process for {model_id}");
1253
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
1254
        .args(download_args)
1255
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
1256
        .envs(envs)
1257
1258
1259
1260
1261
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
1262
1263
        Ok(p) => p,
        Err(err) => {
1264
1265
1266
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
1267
1268
            } else {
                tracing::error!("{}", err);
1269
            }
1270

1271
1272
1273
            return Err(LauncherError::DownloadError);
        }
    };
1274

1275
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
1276

1277
    thread::spawn(move || {
1278
        log_lines(download_stdout);
1279
1280
1281
1282
1283
1284
1285
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
1286
        for line in download_stderr.lines().map_while(Result::ok) {
1287
1288
            err_sender.send(line).unwrap_or(());
        }
1289
    });
1290

1291
    loop {
1292
1293
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
1294
                tracing::info!("Successfully downloaded weights for {model_id}");
1295
                break;
1296
            }
1297
1298

            let mut err = String::new();
1299
1300
1301
1302
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1303
1304
1305
1306
1307
1308
1309
1310
1311
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1312
        }
1313
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1314
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1315
1316
1317
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1318
    }
1319
1320
    Ok(())
}
1321

1322
#[allow(clippy::too_many_arguments)]
1323
1324
1325
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1326
    cuda_graphs: Vec<usize>,
1327
1328
    max_total_tokens: Option<usize>,
    max_input_tokens: Option<usize>,
1329
    quantize: Option<Quantization>,
1330
    max_log_level: LevelFilter,
1331
    shutdown: Arc<AtomicBool>,
1332
1333
1334
1335
1336
1337
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1338
1339
    // Start shard processes
    for rank in 0..num_shard {
1340
1341
1342
1343
1344
1345
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1346
1347
1348
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1349
        let otlp_endpoint = args.otlp_endpoint.clone();
1350
        let otlp_service_name = args.otlp_service_name.clone();
Nicolas Patry's avatar
Nicolas Patry committed
1351
        let speculate = args.speculate;
1352
        let dtype = args.dtype;
1353
        let kv_cache_dtype = args.kv_cache_dtype;
1354
        let trust_remote_code = args.trust_remote_code;
1355
1356
1357
1358
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1359
        let cuda_graphs_clone = cuda_graphs.clone();
1360
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1361
1362
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1363
        let max_batch_size = args.max_batch_size;
drbh's avatar
drbh committed
1364
        let lora_adapters = args.lora_adapters.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1365
1366
        thread::spawn(move || {
            shard_manager(
1367
                model_id,
1368
                revision,
1369
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1370
                speculate,
1371
                dtype,
1372
                kv_cache_dtype,
1373
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1374
1375
1376
1377
1378
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1379
1380
                huggingface_hub_cache,
                weights_cache_override,
1381
                disable_custom_kernels,
1382
1383
                watermark_gamma,
                watermark_delta,
1384
                cuda_graphs_clone,
1385
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1386
1387
                rope_scaling,
                rope_factor,
1388
1389
                max_total_tokens,
                max_batch_size,
1390
                max_input_tokens,
drbh's avatar
drbh committed
1391
                lora_adapters,
1392
                otlp_endpoint,
1393
                otlp_service_name,
1394
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1416
            Ok(ShardStatus::Failed(rank)) => {
1417
                tracing::error!("Shard {rank} failed to start");
1418
                shutdown_shards(shutdown, shutdown_receiver);
1419
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1420
1421
1422
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1423
                shutdown_shards(shutdown, shutdown_receiver);
1424
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1425
1426
1427
            }
        }
    }
1428
1429
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1430

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1443
fn spawn_webserver(
1444
    num_shard: usize,
1445
    args: Args,
1446
1447
    max_input_tokens: Option<usize>,
    max_total_tokens: Option<usize>,
1448
    max_batch_prefill_tokens: u32,
1449
    shutdown: Arc<AtomicBool>,
1450
    shutdown_receiver: &mpsc::Receiver<()>,
1451
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1452
1453
1454
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1455
    let mut router_args = vec![
1456
1457
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1458
        "--max-concurrent-requests".to_string(),
1459
        args.max_concurrent_requests.to_string(),
1460
        "--max-best-of".to_string(),
1461
        args.max_best_of.to_string(),
1462
        "--max-stop-sequences".to_string(),
1463
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1464
1465
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1466
        "--max-batch-prefill-tokens".to_string(),
1467
        max_batch_prefill_tokens.to_string(),
1468
        "--waiting-served-ratio".to_string(),
1469
        args.waiting_served_ratio.to_string(),
1470
        "--max-waiting-tokens".to_string(),
1471
        args.max_waiting_tokens.to_string(),
1472
1473
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1474
1475
        "--hostname".to_string(),
        args.hostname.to_string(),
1476
        "--port".to_string(),
1477
        args.port.to_string(),
1478
        "--master-shard-uds-path".to_string(),
1479
        format!("{}-0", args.shard_uds_path),
1480
        "--tokenizer-name".to_string(),
1481
        args.model_id,
1482
    ];
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
    if let Some(max_input_tokens) = max_input_tokens {
        router_args.extend_from_slice(&[
            "--max-input-tokens".to_string(),
            max_input_tokens.to_string(),
        ]);
    }
    if let Some(max_total_tokens) = max_total_tokens {
        router_args.extend_from_slice(&[
            "--max-total-tokens".to_string(),
            max_total_tokens.to_string(),
        ]);
    }
1495

1496
    // Pass usage stats flags to router
1497
1498
    router_args.push("--usage-stats".to_string());
    router_args.push(args.usage_stats.to_string());
1499

drbh's avatar
drbh committed
1500
1501
1502
1503
1504
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1505
1506
1507
1508
1509
1510
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1511
1512
1513
1514
1515
1516
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1517
1518
1519
1520
1521
1522
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1523
1524
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1525
1526
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1527
1528
    }

1529
1530
1531
1532
    if args.trust_remote_code {
        router_args.push("--trust-remote-code".to_string());
    }

1533
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1534
        router_args.push("--json-output".to_string());
1535
1536
    }

1537
    // OpenTelemetry
1538
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1539
1540
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1541
1542
    }

1543
1544
1545
1546
1547
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1548
1549
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1550
1551
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1552
1553
    }

Erik Kaunismäki's avatar
Erik Kaunismäki committed
1554
1555
1556
1557
1558
    // API Key
    if let Some(api_key) = args.api_key {
        router_args.push("--api-key".to_string());
        router_args.push(api_key);
    }
1559
1560
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1561
1562
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1563
1564
1565
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1566
1567
    }

1568
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1569
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1570

1571
1572
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1573
        envs.push(("HF_TOKEN".into(), api_token.into()))
1574
    };
1575

1576
1577
1578
1579
1580
1581
1582
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1583
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1584
1585
        .args(router_args)
        .envs(envs)
1586
1587
1588
1589
1590
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1591
1592
        Ok(p) => p,
        Err(err) => {
1593
            tracing::error!("Failed to start webserver: {}", err);
1594
1595
1596
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1597
1598
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1599
            }
1600

1601
            shutdown_shards(shutdown, shutdown_receiver);
1602
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1603
1604
1605
        }
    };

1606
1607
1608
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1609
1610

    thread::spawn(move || {
1611
1612
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1613
        for line in stdout.lines() {
1614
            println!("{}", line.unwrap());
1615
        }
1616
1617
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1618
        }
1619
1620
1621
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1622

OlivierDehaene's avatar
OlivierDehaene committed
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1646
1647
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1648
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1649

1650
    // Filter events with LOG_LEVEL
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1667

1668
    if args.json_output {
1669
1670
1671
1672
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1673
    } else {
1674
1675
1676
1677
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1678
1679
    }

1680
1681
1682
1683
1684
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1685
    tracing::info!("{:#?}", args);
1686

1687
1688
1689
1690
1691
1692
1693
1694
1695
    let config: Option<Config> = get_config(&args.model_id, &args.revision).ok();
    let quantize = config.as_ref().and_then(|c| c.quantize);
    // Quantization usually means you're even more RAM constrained.
    let max_default = 4096;

    let max_position_embeddings = if let Some(config) = &config {
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                max_default
1696
            } else {
1697
                max_position_embeddings
1698
            }
1699
1700
1701
1702
1703
1704
1705
1706
        } else {
            max_default
        }
    } else {
        max_default
    };
    let (prefix_caching, attention) = resolve_attention(&config, &args.lora_adapters);
    tracing::info!("Using attention {attention} - Prefix caching {prefix_caching}");
1707
    std::env::set_var("PREFIX_CACHING", prefix_caching);
1708
    std::env::set_var("ATTENTION", attention);
1709
1710
1711
1712
1713
1714
1715
1716

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
1717
1718
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => {
                Some(max_input_tokens)
1719
            }
1720
            (None, None) => None,
1721
1722
        }
    };
1723
    let max_total_tokens = args.max_total_tokens;
1724
1725
1726
1727
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
1728
1729
                // TODO figure out hardware optimal value
                let value = 4096.min(max_position_embeddings as u32);
1730
1731
1732
1733
1734
1735
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1736
    // Validate args
1737
1738
1739
1740
1741
1742
    if let (Some(max_input_tokens), Some(max_total_tokens)) = (max_input_tokens, max_total_tokens) {
        if max_input_tokens >= max_total_tokens {
            return Err(LauncherError::ArgumentValidation(
                    format!("`max_input_tokens`({max_input_tokens}) must be < `max_total_tokens`({max_total_tokens})"),
                ));
        }
1743
    }
1744

1745
1746
1747
1748
1749
    if matches!(args.quantize, Some(Quantization::Bitsandbytes)) {
        tracing::warn!("Bitsandbytes is deprecated, use `eetq` instead, which provides better latencies overall and is drop-in in most cases.");
    }
    let quantize = args.quantize.or(quantize);
    let cuda_graphs = match (&args.cuda_graphs, &quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1750
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1751
1752
1753
1754
1755
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
1756
1757
                | Quantization::BitsandbytesNf4
                | Quantization::BitsandbytesFp4,
1758
1759
            ),
        ) => {
1760
1761
1762
1763
1764
            tracing::warn!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        (None, Some(Quantization::Exl2)) => {
            tracing::warn!("Exl2 doesn't work with cuda graphs, deactivating them");
1765
1766
1767
1768
1769
1770
1771
1772
1773
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1774
1775
1776
1777
1778
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1779
1780
1781
1782
1783
1784
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1785
1786

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1787
    if num_shard > 1 {
1788
1789
1790
1791
1792
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1793
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1794
1795
    }

1796
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1797
1798
1799
1800
1801
1802
1803
        if let Some(max_total_tokens) = max_total_tokens {
            if max_total_tokens as u32 > *max_batch_total_tokens {
                return Err(LauncherError::ArgumentValidation(format!(
                    "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                    max_total_tokens, max_batch_total_tokens
                )));
            }
1804
1805
1806
        }
    }

1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1821
1822
1823
1824
1825
1826
1827
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1828

1829
    // Download and convert model weights
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
    download_convert_model(
        &args.model_id,
        args.revision.as_deref(),
        args.trust_remote_code,
        args.huggingface_hub_cache.as_deref(),
        args.weights_cache_override.as_deref(),
        running.clone(),
    )?;

    // Download and convert lora adapters if any
    if let Some(lora_adapters) = &args.lora_adapters {
        for adapter in lora_adapters.split(',') {
1842
1843
1844
1845
            // skip download if a path is provided
            if adapter.contains('=') {
                continue;
            }
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876

            let adapter = adapter.trim();

            // check if adapter has more than 1 '@'
            if adapter.matches('@').count() > 1 {
                return Err(LauncherError::ArgumentValidation(format!(
                    "Invalid LoRA adapter format: {}",
                    adapter
                )));
            }

            // capture adapter_id, path, revision in format of adapter_id=path@revision
            let re = Regex::new(r"^([^=@]+)(?:=([^@]+))?(?:@(.+))?$").unwrap();
            if let Some(caps) = re.captures(adapter) {
                let adapter_id = caps.get(1).map_or("", |m| m.as_str());
                let revision = caps.get(3).map(|m| m.as_str());

                download_convert_model(
                    adapter_id,
                    revision,
                    args.trust_remote_code,
                    args.huggingface_hub_cache.as_deref(),
                    args.weights_cache_override.as_deref(),
                    running.clone(),
                )?;
            } else {
                return Err(LauncherError::ArgumentValidation(format!(
                    "Invalid LoRA adapter format: {}",
                    adapter
                )));
            }
1877
1878
        }
    }
1879

OlivierDehaene's avatar
OlivierDehaene committed
1880
1881
1882
1883
1884
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1885
    // Shared shutdown bool
1886
    let shutdown = Arc::new(AtomicBool::new(false));
1887
1888
1889
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1890

1891
1892
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1893

1894
1895
1896
    spawn_shards(
        num_shard,
        &args,
1897
        cuda_graphs,
1898
        max_total_tokens,
1899
        max_input_tokens,
1900
        quantize,
1901
        max_log_level,
1902
1903
1904
1905
1906
1907
1908
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1909

1910
1911
1912
1913
1914
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1915

1916
1917
1918
1919
1920
1921
1922
1923
1924
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
1925
    .inspect_err(|_| {
1926
1927
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
    })?;
1928
1929
1930
1931
1932

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1933
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1934
            tracing::error!("Shard {rank} crashed");
1935
1936
1937
1938
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1939
        match webserver.try_wait().unwrap() {
1940
1941
1942
1943
1944
1945
1946
1947
1948
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1949
    }
1950
1951

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1952
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1953
1954
1955
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1956
}