main.rs 67.6 KB
Newer Older
1
use clap::{Parser, ValueEnum};
Nicolas Patry's avatar
Nicolas Patry committed
2
3
4
5
use hf_hub::{
    api::sync::{Api, ApiBuilder},
    Repo, RepoType,
};
6
7
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
8
use regex::Regex;
9
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
10
use std::env;
11
use std::ffi::OsString;
12
use std::io::{BufRead, BufReader};
13
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
15
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16
17
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
18
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19
20
21
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
22
23
24
25
use std::{
    fs, io,
    io::{Read, Write},
};
26
use thiserror::Error;
27
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
28

29
mod env_runtime;
30
mod gpu;
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
fn get_config(
    model_id: &str,
    revision: &Option<String>,
) -> Result<Config, Box<dyn std::error::Error>> {
    let mut path = std::path::Path::new(model_id).to_path_buf();
    let model_id = model_id.to_string();
    let filename = if !path.exists() {
        // Assume it's a hub id

        let api = if let Ok(token) = std::env::var("HF_TOKEN") {
            // env variable has precedence over on file token.
            ApiBuilder::new().with_token(Some(token)).build()?
        } else {
            Api::new()?
        };
        let repo = if let Some(ref revision) = revision {
            api.repo(Repo::with_revision(
                model_id,
                RepoType::Model,
                revision.to_string(),
            ))
        } else {
            api.model(model_id)
        };
        repo.get("config.json")?
    } else {
        path.push("config.json");
        path
    };

    let content = std::fs::read_to_string(filename)?;
    let config: RawConfig = serde_json::from_str(&content)?;

    let config: Config = config.into();
    Ok(config)
}

fn resolve_attention(config: &Option<Config>, lora_adapters: &Option<String>) -> (String, String) {
70
    let compute_capability = gpu::get_cuda_capability();
71
    let mut prefix_caching: Option<String> = std::env::var("PREFIX_CACHING").ok();
72
73
74
75
76
77
78
79
80
81
82
    let mut attention: Option<String> = std::env::var("ATTENTION").ok();
    if let Some(config) = config {
        if prefix_caching.is_none() {
            if config.vision_config.is_some() {
                tracing::info!("Disabling prefix caching because of VLM model");
                prefix_caching = Some("0".to_string());
            } else if config.is_encoder_decoder {
                tracing::info!("Disabling prefix caching because of seq2seq model");
                prefix_caching = Some("0".to_string());
            }
        }
83
84
85
86
87
88
89

        let fallback_attention = if matches!(compute_capability, Some((major, _)) if major < 8) {
            "paged"
        } else {
            "flashdecoding"
        };

90
91
92
93
94
95
96
        match config.head_dim {
            Some(h) if h == 64 || h == 128 || h == 256 => {
                if lora_adapters.is_some() && prefix_caching.is_none() {
                    tracing::info!("Disabling prefix caching because of lora adapters");
                    prefix_caching = Some("0".to_string());
                }
                match config.model_type.as_deref() {
Daniël de Kok's avatar
Daniël de Kok committed
97
                    Some("falcon") | Some("deepseek_v2") => {
98
99
100
101
                        // Required because gemma2 needs bfloat16 which is not supported by
                        // flashinfer ?
                        if attention.is_none() {
                            tracing::info!(
102
                                "Forcing attention to '{fallback_attention}' because model {} requires it",
103
104
                                config.model_type.as_ref().unwrap()
                            );
105
106
107
108
109
                            attention = Some(fallback_attention.to_string());
                        }
                        if fallback_attention == "paged" && prefix_caching.is_none() {
                            tracing::info!("Disabling prefix caching because it is not supported with 'paged' attention");
                            prefix_caching = Some("0".to_string());
110
111
112
113
114
115
116
117
                        }
                    }
                    Some("t5") => {}
                    _ => {}
                }
            }
            _ => {
                if attention.is_none() {
118
119
                    tracing::info!("Forcing attention to '{fallback_attention}' because head dim is not supported by flashinfer, also disabling prefix caching");
                    attention = Some(fallback_attention.to_string());
120
121
122
123
124
125
126
                }
                if prefix_caching.is_none() {
                    prefix_caching = Some("0".to_string());
                }
            }
        }
    }
127
128
129
130
    if attention == Some("paged".to_string()) && prefix_caching.is_none() {
        tracing::info!("Disabling prefix caching on paged attention");
        prefix_caching = Some("0".to_string());
    }
131

132
    let attention = attention.unwrap_or("flashinfer".to_string());
133
134
    let prefix_caching = prefix_caching.unwrap_or("true".to_string());

135
136
137
    (prefix_caching, attention)
}

138
#[derive(Deserialize)]
139
struct RawConfig {
140
    max_position_embeddings: Option<usize>,
141
    n_positions: Option<usize>,
142
    model_type: Option<String>,
143
    max_seq_len: Option<usize>,
144
    quantization_config: Option<QuantizationConfig>,
145
146
147
148
149
150
    n_embd: Option<usize>,
    hidden_size: Option<usize>,
    num_attention_heads: Option<usize>,
    head_dim: Option<usize>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: Option<bool>,
151
152
153
154
155
}

#[derive(Deserialize)]
struct QuantizationConfig {
    quant_method: Option<Quantization>,
156
157
}

158
159
160
#[derive(Deserialize)]
struct VisionConfig {}

161
162
163
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
164
    quantize: Option<Quantization>,
165
166
167
168
    head_dim: Option<usize>,
    model_type: Option<String>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: bool,
169
170
171
172
173
174
175
176
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
177
        let quantize = other.quantization_config.and_then(|q| q.quant_method);
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        let head_dim = other.head_dim.or_else(|| {
            match (other.hidden_size, other.n_embd, other.num_attention_heads) {
                (Some(hidden_size), _, Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                // Legacy
                (_, Some(hidden_size), Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                _ => None,
            }
        });
        let model_type = other.model_type;
        let vision_config = other.vision_config;
        let is_encoder_decoder = other.is_encoder_decoder.unwrap_or(false);
197
198
        Config {
            max_position_embeddings,
199
            quantize,
200
201
202
203
            head_dim,
            model_type,
            vision_config,
            is_encoder_decoder,
204
205
206
207
        }
    }
}

208
209
#[derive(Clone, Copy, Debug, ValueEnum, Deserialize)]
#[serde(rename_all = "kebab-case")]
210
enum Quantization {
211
    /// 4 bit quantization. Requires a specific AWQ quantized model:
212
    ///   <https://hf.co/models?search=awq>.
213
    /// Should replace GPTQ models wherever possible because of the better latency
214
215
216
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
217
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
218
    Eetq,
219
220
221
222
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
223
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
224
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
225
226
227
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
228
229
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
230
231
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
232
233
234
235
    // #[deprecated(
    //     since = "1.1.0",
    //     note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    // )]
236
    Bitsandbytes,
237
238
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
239
    BitsandbytesNf4,
240
241
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
242
    BitsandbytesFp4,
Nicolas Patry's avatar
Nicolas Patry committed
243
244
245
246
247
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
248
249
250
251
252
253
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
254
255
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
256
257
258
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
259
            Quantization::BitsandbytesNf4 => {
Nicolas Patry's avatar
Nicolas Patry committed
260
261
                write!(f, "bitsandbytes-nf4")
            }
262
            Quantization::BitsandbytesFp4 => {
Nicolas Patry's avatar
Nicolas Patry committed
263
264
                write!(f, "bitsandbytes-fp4")
            }
265
266
267
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
268
269
270
            Quantization::Gptq => {
                write!(f, "gptq")
            }
271
272
273
            Quantization::Marlin => {
                write!(f, "marlin")
            }
274
275
276
            Quantization::Awq => {
                write!(f, "awq")
            }
277
278
279
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
280
281
282
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
283
284
285
286
        }
    }
}

287
288
289
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
290
    #[clap(name = "bfloat16")]
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

308
309
#[derive(Clone, Copy, Debug, ValueEnum)]
enum KVCacheDtype {
310
311
312
    #[clap(name = "fp8_e4m3fn")]
    Fp8e4m3fn,

313
314
315
316
317
318
319
    #[clap(name = "fp8_e5m2")]
    Fp8e5m2,
}

impl std::fmt::Display for KVCacheDtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
320
321
322
            KVCacheDtype::Fp8e4m3fn => {
                write!(f, "fp8_e4m3fn")
            }
323
324
325
326
327
328
329
            KVCacheDtype::Fp8e5m2 => {
                write!(f, "fp8_e5m2")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#[derive(Clone, Copy, Debug, ValueEnum)]
pub enum UsageStatsLevel {
    /// Default option, usage statistics are collected anonymously
    On,
    /// Disables all collection of usage statistics
    Off,
    /// Doesn't send the error stack trace or error type, but allows sending a crash event
    NoStack,
}

impl std::fmt::Display for UsageStatsLevel {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            UsageStatsLevel::On => {
                write!(f, "on")
            }
            UsageStatsLevel::Off => {
                write!(f, "off")
            }
            UsageStatsLevel::NoStack => {
                write!(f, "no-stack")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
377
378
379
380
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
381
382
383
384
385
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
386
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
387
    model_id: String,
388
389
390

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
391
    #[clap(long, env)]
392
    revision: Option<String>,
393

394
395
396
397
398
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

399
    /// Whether to shard the model across multiple GPUs
400
401
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
402
403
    #[clap(long, env)]
    sharded: Option<bool>,
404
405

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
406
407
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
408
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
409
410
    #[clap(long, env)]
    num_shard: Option<usize>,
411

412
413
414
415
416
    /// Quantization method to use for the model. It is not necessary to specify this option
    /// for pre-quantized models, since the quantization method is read from the model
    /// configuration.
    ///
    /// Marlin kernels will be used automatically for GPTQ/AWQ models.
417
418
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
419

Nicolas Patry's avatar
Nicolas Patry committed
420
421
422
423
424
425
426
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

427
428
429
430
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

431
432
    /// Specify the dtype for the key-value cache. When this option is not provided,
    /// the dtype of the model is used (typically `float16` or `bfloat16`). Currently
433
    /// the only supported value are `fp8_e4m3fn` and `fp8_e5m2` on CUDA.
434
435
436
    #[clap(long, env, value_enum)]
    kv_cache_dtype: Option<KVCacheDtype>,

437
438
439
440
441
442
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

443
444
445
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
446
447
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
448
449
450
451

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
452
453
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
454
455
456
457
458
459

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
460
461
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
462

Nicolas Patry's avatar
Nicolas Patry committed
463
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
464
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
465
466
467
468
469
470
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

471
472
473
474
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
475
    /// Default to min(max_allocatable, max_position_embeddings) - 1
476
477
478
479
480
481
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
482
483
484
485
486
487
488
489
490

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
491
    /// Default to min(max_allocatable, max_position_embeddings)
492
493
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
494
495
496
497
498
499
500
501
502
503
504

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
505
    #[clap(default_value = "0.3", long, env)]
506
    waiting_served_ratio: f32,
507

508
509
510
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
511
512
513
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
514

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
532
533
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
552
553
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
554

555
556
557
558
559
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

560
561
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
562
563
564
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
565

566
567
568
569
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

570
    /// The port to listen on.
571
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
572
    port: u16,
573
574
575

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
576
577
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
578
579

    /// The address the master shard will listen on. (setting used by torch distributed)
580
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
581
    master_addr: String,
582
583

    /// The address the master port will listen on. (setting used by torch distributed)
584
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
585
    master_port: usize,
586
587
588

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
589
    #[clap(long, env)]
590
    huggingface_hub_cache: Option<String>,
591
592
593

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
594
595
    #[clap(long, env)]
    weights_cache_override: Option<String>,
596
597
598
599
600

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
601
    #[clap(long, env)]
602
    disable_custom_kernels: bool,
603

604
605
606
607
608
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

629
    /// Outputs the logs in JSON format (useful for telemetry)
630
    #[clap(long, env)]
631
    json_output: bool,
632

633
634
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
635

636
637
638
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

639
640
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
641
642
643
644

    #[clap(long, env)]
    api_key: Option<String>,

645
646
647
648
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
649

650
651
652
653
654
655
656
657
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

658
    /// ngrok edge
659
    #[clap(long, env)]
660
    ngrok_edge: Option<String>,
661

662
663
664
665
666
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
667
668
669
670
671
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

672
673
674
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
675
676
677
678

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
drbh's avatar
drbh committed
679
680
681
682
683

    /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
    /// startup that will be available to callers via the `adapter_id` field in a request.
    #[clap(long, env)]
    lora_adapters: Option<String>,
684

685
686
687
688
689
    /// Control if anonymous usage stats are collected.
    /// Options are "on", "off" and "no-stack"
    /// Defaul is on.
    #[clap(default_value = "on", long, env)]
    usage_stats: UsageStatsLevel,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
690
691
}

692
693
694
#[derive(Debug)]
enum ShardStatus {
    Ready,
695
    Failed(usize),
696
}
697

698
699
700
701
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
702
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
703
    speculate: Option<usize>,
704
    dtype: Option<Dtype>,
705
    kv_cache_dtype: Option<KVCacheDtype>,
706
    trust_remote_code: bool,
707
708
709
710
711
712
713
714
715
716
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
717
    cuda_graphs: Vec<usize>,
718
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
719
720
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
721
    max_total_tokens: Option<usize>,
722
    max_batch_size: Option<usize>,
723
    max_input_tokens: Option<usize>,
drbh's avatar
drbh committed
724
    lora_adapters: Option<String>,
725
    otlp_endpoint: Option<String>,
726
    otlp_service_name: String,
727
    log_level: LevelFilter,
728
    status_sender: mpsc::Sender<ShardStatus>,
729
    shutdown: Arc<AtomicBool>,
730
731
    _shutdown_sender: mpsc::Sender<()>,
) {
732
733
734
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

735
736
737
738
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
739
740
741
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
742
743

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
744
    let mut shard_args = vec![
745
746
747
748
749
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
750
        log_level.to_string().to_uppercase(),
751
752
753
        "--json-output".to_string(),
    ];

754
755
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
756
        shard_args.push("--trust-remote-code".to_string());
757
758
    }

759
760
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
761
        shard_args.push("--sharded".to_string());
762
763
    }

764
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
765
766
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
767
    }
768

Nicolas Patry's avatar
Nicolas Patry committed
769
770
771
772
773
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

774
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
775
776
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
777
778
    }

779
780
781
782
783
    if let Some(kv_cache_dtype) = kv_cache_dtype {
        shard_args.push("--kv-cache-dtype".to_string());
        shard_args.push(kv_cache_dtype.to_string())
    }

784
785
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
786
787
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
788
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
789

Nicolas Patry's avatar
Nicolas Patry committed
790
791
792
793
794
795
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
796

797
    // OpenTelemetry Endpoint
798
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
799
800
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
801
802
    }

803
804
805
806
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

807
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
808
809
810
811
    if let Some(max_input_tokens) = max_input_tokens {
        shard_args.push("--max-input-tokens".to_string());
        shard_args.push(max_input_tokens.to_string());
    }
812

813
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
814
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
815

816
817
818
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

819
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
820
821
822
823
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
824
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
825

826
827
828
829
830
831
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

832
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
833
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
834

835
836
837
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

838
839
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
840
    envs.push((
841
842
843
844
845
846
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
847
        envs.push(("HF_TOKEN".into(), api_token.into()))
848
849
    };

Nicolas Patry's avatar
Nicolas Patry committed
850
851
852
853
854
855
856
857
858
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

859
860
861
862
863
864
    if let Some(max_total_tokens) = max_total_tokens {
        envs.push((
            "MAX_TOTAL_TOKENS".into(),
            max_total_tokens.to_string().into(),
        ));
    }
865
866
867
868
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

drbh's avatar
drbh committed
869
870
871
872
873
    // Lora Adapters
    if let Some(lora_adapters) = lora_adapters {
        envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
    }

874
875
876
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
877
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
878
879
880
881
882
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
883
        envs.push((
884
885
886
887
888
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

889
    // Enable experimental support for cuda graphs
890
891
892
893
894
895
896
897
898
899
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
900
901
    }

902
903
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
904
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
905
906
907
908
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
909
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
910
911
912
913
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
914
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
915
916
917
    }

    // Start process
918
    tracing::info!("Starting shard");
919
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
920
        .args(shard_args)
921
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
922
        .envs(envs)
923
        .stdin(Stdio::piped())
924
925
926
927
928
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
929
930
        Ok(p) => p,
        Err(err) => {
931
932
933
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
934
935
            }
            {
936
                tracing::error!("{}", err);
937
            }
938

939
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
940
941
942
943
944
            return;
        }
    };

    // Redirect STDOUT to the console
945
    let mut pstdin = p.stdin.take().unwrap();
946
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
947
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
948

949
    //stdout tracing thread
950
    thread::spawn(move || {
951
        log_lines(shard_stdout_reader);
952
    });
953
954
955
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
956
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
957
958
959
            err_sender.send(line).unwrap_or(());
        }
    });
960
    // We read stdin in another thread as it seems that lines() can block in some cases
Nicolas Patry's avatar
Nicolas Patry committed
961
962
963
964
965
966
967
968
969
    if LevelFilter::current() >= tracing::Level::DEBUG {
        thread::spawn(move || {
            let mut stdin = io::stdin(); // We get `Stdin` here.
            loop {
                let mut buffer = vec![0; 4096];
                if let Ok(n) = stdin.read(&mut buffer) {
                    if n > 0 {
                        let _ = pstdin.write_all(&buffer[..n]);
                    }
970
971
                }
            }
Nicolas Patry's avatar
Nicolas Patry committed
972
973
        });
    }
974
975
976
977
978
979

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
980
        if let Some(exit_status) = p.try_wait().unwrap() {
981
982
983
984
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
985

986
            tracing::error!("Shard complete standard error output:\n{err}");
987

988
            if let Some(signal) = exit_status.signal() {
989
990
991
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

992
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
993
994
995
996
            return;
        }

        // We received a shutdown signal
997
        if shutdown.load(Ordering::SeqCst) {
998
            terminate("shard", p, Duration::from_secs(90)).unwrap();
999
1000
1001
1002
1003
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
1004
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
1005
1006
1007
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
1008
            tracing::info!("Waiting for shard to be ready...");
1009
1010
1011
1012
1013
1014
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

1015
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
1016
1017
1018
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
1019
    shutdown.store(true, Ordering::SeqCst);
1020
1021
1022
1023
1024
1025
1026

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
1027
1028
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
1029
1030
1031
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
1032
        },
1033
    };
1034
1035
    let n_devices = devices.split(',').count();
    Some(n_devices)
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
1069
1070
1071
1072
1073
1074
1075
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
1076
1077
1078
1079
        }
    }
}

1080
impl TryFrom<&[u8]> for PythonLogMessage {
1081
1082
    type Error = serde_json::Error;

1083
1084
    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        serde_json::from_slice::<Self>(value)
1085
1086
1087
    }
}

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
fn log_lines<R: Sized + Read>(mut bufread: BufReader<R>) {
    let mut buffer = vec![0u8; 8 * 4096];
    let mut stdout = std::io::stdout();
    loop {
        let n = bufread.read(&mut buffer);
        if let Ok(n) = n {
            if n > 0 {
                let mut lines = buffer[..n].split(|i| *i == b'\n').peekable();
                while let Some(line) = lines.next() {
                    match PythonLogMessage::try_from(line) {
                        Ok(log) => log.trace(),
                        // For interactive debugging ?
                        Err(_) => {
1101
1102
1103
1104
1105
1106
                            if LevelFilter::current() >= tracing::Level::DEBUG {
                                stdout.write_all(line).unwrap();
                                if lines.peek().is_some() {
                                    stdout.write_all(b"\n").unwrap();
                                }
                                stdout.flush().unwrap();
1107
1108
1109
1110
                            }
                        }
                    }
                }
1111
1112
            } else {
                break;
1113
            }
1114
1115
1116
1117
        }
    }
}

1118
1119
1120
1121
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
1122
1123
1124
1125
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
1126
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
1127
            let n_devices = num_cuda_devices()
1128
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
1129
            if n_devices <= 1 {
1130
1131
1132
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
1133
            }
1134
            n_devices
1135
        }
1136
1137
1138
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
1139
1140
1141
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
1142
1143
            }
            num_shard
1144
        }
1145
1146
1147
1148
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
1149
    };
1150
    if num_shard < 1 {
1151
1152
1153
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
1154
    }
1155
    Ok(num_shard)
1156
}
1157

1158
#[derive(Debug, Error)]
1159
enum LauncherError {
1160
    #[error("Invalid argument: {0}")]
1161
    ArgumentValidation(String),
1162
    #[error("not enough cuda devices: {0}")]
1163
    NotEnoughCUDADevices(String),
1164
    #[error("Download error")]
1165
    DownloadError,
1166
    #[error("Shard cannot start")]
1167
    ShardCannotStart,
1168
    #[error("Shard disconnected")]
1169
    ShardDisconnected,
1170
    #[error("Shard failed")]
1171
    ShardFailed,
1172
    #[error("Webserver failed")]
1173
    WebserverFailed,
1174
    #[error("Webserver cannot start")]
1175
1176
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1177

1178
1179
1180
1181
1182
1183
1184
1185
fn download_convert_model(
    model_id: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
    huggingface_hub_cache: Option<&str>,
    weights_cache_override: Option<&str>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
1186
1187
1188
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
1189
    let mut download_args = vec![
1190
        "download-weights".to_string(),
1191
        model_id.to_string(),
1192
1193
1194
1195
1196
1197
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
1198

1199
    // Model optional revision
1200
    if let Some(revision) = &revision {
OlivierDehaene's avatar
OlivierDehaene committed
1201
1202
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
1203
    }
1204

1205
    // Trust remote code for automatic peft fusion
1206
    if trust_remote_code {
1207
1208
1209
        download_args.push("--trust-remote-code".to_string());
    }

1210
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1211
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1212

1213
1214
1215
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

1216
1217
1218
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

1219
    // If huggingface_hub_cache is set, pass it to the download process
1220
    // Useful when running inside a docker container
1221
    if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
1222
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
1223
    };
1224

1225
1226
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
1227
    envs.push((
1228
1229
1230
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
1231

1232
1233
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1234
        envs.push(("HF_TOKEN".into(), api_token.into()))
1235
    };
1236

1237
1238
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
1239
    if let Some(weights_cache_override) = &weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
1240
        envs.push((
1241
1242
1243
1244
1245
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

1246
    // Start process
1247
    tracing::info!("Starting check and download process for {model_id}");
1248
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
1249
        .args(download_args)
1250
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
1251
        .envs(envs)
1252
1253
1254
1255
1256
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
1257
1258
        Ok(p) => p,
        Err(err) => {
1259
1260
1261
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
1262
1263
            } else {
                tracing::error!("{}", err);
1264
            }
1265

1266
1267
1268
            return Err(LauncherError::DownloadError);
        }
    };
1269

1270
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
1271

1272
    thread::spawn(move || {
1273
        log_lines(download_stdout);
1274
1275
1276
1277
1278
1279
1280
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
1281
        for line in download_stderr.lines().map_while(Result::ok) {
1282
1283
            err_sender.send(line).unwrap_or(());
        }
1284
    });
1285

1286
    loop {
1287
1288
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
1289
                tracing::info!("Successfully downloaded weights for {model_id}");
1290
                break;
1291
            }
1292
1293

            let mut err = String::new();
1294
1295
1296
1297
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1298
1299
1300
1301
1302
1303
1304
1305
1306
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1307
        }
1308
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1309
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1310
1311
1312
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1313
    }
1314
1315
    Ok(())
}
1316

1317
#[allow(clippy::too_many_arguments)]
1318
1319
1320
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1321
    cuda_graphs: Vec<usize>,
1322
1323
    max_total_tokens: Option<usize>,
    max_input_tokens: Option<usize>,
1324
    quantize: Option<Quantization>,
1325
    max_log_level: LevelFilter,
1326
    shutdown: Arc<AtomicBool>,
1327
1328
1329
1330
1331
1332
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1333
1334
    // Start shard processes
    for rank in 0..num_shard {
1335
1336
1337
1338
1339
1340
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1341
1342
1343
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1344
        let otlp_endpoint = args.otlp_endpoint.clone();
1345
        let otlp_service_name = args.otlp_service_name.clone();
Nicolas Patry's avatar
Nicolas Patry committed
1346
        let speculate = args.speculate;
1347
        let dtype = args.dtype;
1348
        let kv_cache_dtype = args.kv_cache_dtype;
1349
        let trust_remote_code = args.trust_remote_code;
1350
1351
1352
1353
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1354
        let cuda_graphs_clone = cuda_graphs.clone();
1355
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1356
1357
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1358
        let max_batch_size = args.max_batch_size;
drbh's avatar
drbh committed
1359
        let lora_adapters = args.lora_adapters.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1360
1361
        thread::spawn(move || {
            shard_manager(
1362
                model_id,
1363
                revision,
1364
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1365
                speculate,
1366
                dtype,
1367
                kv_cache_dtype,
1368
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1369
1370
1371
1372
1373
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1374
1375
                huggingface_hub_cache,
                weights_cache_override,
1376
                disable_custom_kernels,
1377
1378
                watermark_gamma,
                watermark_delta,
1379
                cuda_graphs_clone,
1380
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1381
1382
                rope_scaling,
                rope_factor,
1383
1384
                max_total_tokens,
                max_batch_size,
1385
                max_input_tokens,
drbh's avatar
drbh committed
1386
                lora_adapters,
1387
                otlp_endpoint,
1388
                otlp_service_name,
1389
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1411
            Ok(ShardStatus::Failed(rank)) => {
1412
                tracing::error!("Shard {rank} failed to start");
1413
                shutdown_shards(shutdown, shutdown_receiver);
1414
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1415
1416
1417
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1418
                shutdown_shards(shutdown, shutdown_receiver);
1419
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1420
1421
1422
            }
        }
    }
1423
1424
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1425

1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1438
fn spawn_webserver(
1439
    num_shard: usize,
1440
    args: Args,
1441
1442
    max_input_tokens: Option<usize>,
    max_total_tokens: Option<usize>,
1443
    max_batch_prefill_tokens: u32,
1444
    shutdown: Arc<AtomicBool>,
1445
    shutdown_receiver: &mpsc::Receiver<()>,
1446
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1447
1448
1449
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1450
    let mut router_args = vec![
1451
1452
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1453
        "--max-concurrent-requests".to_string(),
1454
        args.max_concurrent_requests.to_string(),
1455
        "--max-best-of".to_string(),
1456
        args.max_best_of.to_string(),
1457
        "--max-stop-sequences".to_string(),
1458
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1459
1460
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1461
        "--max-batch-prefill-tokens".to_string(),
1462
        max_batch_prefill_tokens.to_string(),
1463
        "--waiting-served-ratio".to_string(),
1464
        args.waiting_served_ratio.to_string(),
1465
        "--max-waiting-tokens".to_string(),
1466
        args.max_waiting_tokens.to_string(),
1467
1468
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1469
1470
        "--hostname".to_string(),
        args.hostname.to_string(),
1471
        "--port".to_string(),
1472
        args.port.to_string(),
1473
        "--master-shard-uds-path".to_string(),
1474
        format!("{}-0", args.shard_uds_path),
1475
        "--tokenizer-name".to_string(),
1476
        args.model_id,
1477
    ];
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
    if let Some(max_input_tokens) = max_input_tokens {
        router_args.extend_from_slice(&[
            "--max-input-tokens".to_string(),
            max_input_tokens.to_string(),
        ]);
    }
    if let Some(max_total_tokens) = max_total_tokens {
        router_args.extend_from_slice(&[
            "--max-total-tokens".to_string(),
            max_total_tokens.to_string(),
        ]);
    }
1490

1491
    // Pass usage stats flags to router
1492
1493
    router_args.push("--usage-stats".to_string());
    router_args.push(args.usage_stats.to_string());
1494

drbh's avatar
drbh committed
1495
1496
1497
1498
1499
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1500
1501
1502
1503
1504
1505
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1506
1507
1508
1509
1510
1511
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1512
1513
1514
1515
1516
1517
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1518
1519
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1520
1521
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1522
1523
    }

1524
1525
1526
1527
    if args.trust_remote_code {
        router_args.push("--trust-remote-code".to_string());
    }

1528
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1529
        router_args.push("--json-output".to_string());
1530
1531
    }

1532
    // OpenTelemetry
1533
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1534
1535
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1536
1537
    }

1538
1539
1540
1541
1542
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1543
1544
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1545
1546
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1547
1548
    }

Erik Kaunismäki's avatar
Erik Kaunismäki committed
1549
1550
1551
1552
1553
    // API Key
    if let Some(api_key) = args.api_key {
        router_args.push("--api-key".to_string());
        router_args.push(api_key);
    }
1554
1555
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1556
1557
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1558
1559
1560
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1561
1562
    }

1563
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1564
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1565

1566
1567
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1568
        envs.push(("HF_TOKEN".into(), api_token.into()))
1569
    };
1570

1571
1572
1573
1574
1575
1576
1577
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1578
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1579
1580
        .args(router_args)
        .envs(envs)
1581
1582
1583
1584
1585
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1586
1587
        Ok(p) => p,
        Err(err) => {
1588
            tracing::error!("Failed to start webserver: {}", err);
1589
1590
1591
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1592
1593
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1594
            }
1595

1596
            shutdown_shards(shutdown, shutdown_receiver);
1597
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1598
1599
1600
        }
    };

1601
1602
1603
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1604
1605

    thread::spawn(move || {
1606
1607
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1608
        for line in stdout.lines() {
1609
            println!("{}", line.unwrap());
1610
        }
1611
1612
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1613
        }
1614
1615
1616
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1617

OlivierDehaene's avatar
OlivierDehaene committed
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1641
1642
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1643
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1644

1645
    // Filter events with LOG_LEVEL
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1662

1663
    if args.json_output {
1664
1665
1666
1667
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1668
    } else {
1669
1670
1671
1672
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1673
1674
    }

1675
1676
1677
1678
1679
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1680
    tracing::info!("{:#?}", args);
1681

1682
1683
1684
1685
1686
1687
1688
1689
1690
    let config: Option<Config> = get_config(&args.model_id, &args.revision).ok();
    let quantize = config.as_ref().and_then(|c| c.quantize);
    // Quantization usually means you're even more RAM constrained.
    let max_default = 4096;

    let max_position_embeddings = if let Some(config) = &config {
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                max_default
1691
            } else {
1692
                max_position_embeddings
1693
            }
1694
1695
1696
1697
1698
1699
1700
1701
        } else {
            max_default
        }
    } else {
        max_default
    };
    let (prefix_caching, attention) = resolve_attention(&config, &args.lora_adapters);
    tracing::info!("Using attention {attention} - Prefix caching {prefix_caching}");
1702
    std::env::set_var("PREFIX_CACHING", prefix_caching);
1703
    std::env::set_var("ATTENTION", attention);
1704
1705
1706
1707
1708
1709
1710
1711

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
1712
1713
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => {
                Some(max_input_tokens)
1714
            }
1715
            (None, None) => None,
1716
1717
        }
    };
1718
    let max_total_tokens = args.max_total_tokens;
1719
1720
1721
1722
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
1723
1724
                // TODO figure out hardware optimal value
                let value = 4096.min(max_position_embeddings as u32);
1725
1726
1727
1728
1729
1730
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1731
    // Validate args
1732
1733
1734
1735
1736
1737
    if let (Some(max_input_tokens), Some(max_total_tokens)) = (max_input_tokens, max_total_tokens) {
        if max_input_tokens >= max_total_tokens {
            return Err(LauncherError::ArgumentValidation(
                    format!("`max_input_tokens`({max_input_tokens}) must be < `max_total_tokens`({max_total_tokens})"),
                ));
        }
1738
    }
1739

1740
1741
1742
1743
1744
    if matches!(args.quantize, Some(Quantization::Bitsandbytes)) {
        tracing::warn!("Bitsandbytes is deprecated, use `eetq` instead, which provides better latencies overall and is drop-in in most cases.");
    }
    let quantize = args.quantize.or(quantize);
    let cuda_graphs = match (&args.cuda_graphs, &quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1745
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1746
1747
1748
1749
1750
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
1751
1752
                | Quantization::BitsandbytesNf4
                | Quantization::BitsandbytesFp4,
1753
1754
            ),
        ) => {
1755
1756
1757
1758
1759
            tracing::warn!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        (None, Some(Quantization::Exl2)) => {
            tracing::warn!("Exl2 doesn't work with cuda graphs, deactivating them");
1760
1761
1762
1763
1764
1765
1766
1767
1768
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1769
1770
1771
1772
1773
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1774
1775
1776
1777
1778
1779
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1780
1781

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1782
    if num_shard > 1 {
1783
1784
1785
1786
1787
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1788
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1789
1790
    }

1791
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1792
1793
1794
1795
1796
1797
1798
        if let Some(max_total_tokens) = max_total_tokens {
            if max_total_tokens as u32 > *max_batch_total_tokens {
                return Err(LauncherError::ArgumentValidation(format!(
                    "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                    max_total_tokens, max_batch_total_tokens
                )));
            }
1799
1800
1801
        }
    }

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1816
1817
1818
1819
1820
1821
1822
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1823

1824
    // Download and convert model weights
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
    download_convert_model(
        &args.model_id,
        args.revision.as_deref(),
        args.trust_remote_code,
        args.huggingface_hub_cache.as_deref(),
        args.weights_cache_override.as_deref(),
        running.clone(),
    )?;

    // Download and convert lora adapters if any
    if let Some(lora_adapters) = &args.lora_adapters {
        for adapter in lora_adapters.split(',') {
1837
1838
1839
1840
            // skip download if a path is provided
            if adapter.contains('=') {
                continue;
            }
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871

            let adapter = adapter.trim();

            // check if adapter has more than 1 '@'
            if adapter.matches('@').count() > 1 {
                return Err(LauncherError::ArgumentValidation(format!(
                    "Invalid LoRA adapter format: {}",
                    adapter
                )));
            }

            // capture adapter_id, path, revision in format of adapter_id=path@revision
            let re = Regex::new(r"^([^=@]+)(?:=([^@]+))?(?:@(.+))?$").unwrap();
            if let Some(caps) = re.captures(adapter) {
                let adapter_id = caps.get(1).map_or("", |m| m.as_str());
                let revision = caps.get(3).map(|m| m.as_str());

                download_convert_model(
                    adapter_id,
                    revision,
                    args.trust_remote_code,
                    args.huggingface_hub_cache.as_deref(),
                    args.weights_cache_override.as_deref(),
                    running.clone(),
                )?;
            } else {
                return Err(LauncherError::ArgumentValidation(format!(
                    "Invalid LoRA adapter format: {}",
                    adapter
                )));
            }
1872
1873
        }
    }
1874

OlivierDehaene's avatar
OlivierDehaene committed
1875
1876
1877
1878
1879
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1880
    // Shared shutdown bool
1881
    let shutdown = Arc::new(AtomicBool::new(false));
1882
1883
1884
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1885

1886
1887
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1888

1889
1890
1891
    spawn_shards(
        num_shard,
        &args,
1892
        cuda_graphs,
1893
        max_total_tokens,
1894
        max_input_tokens,
1895
        quantize,
1896
        max_log_level,
1897
1898
1899
1900
1901
1902
1903
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1904

1905
1906
1907
1908
1909
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1910

1911
1912
1913
1914
1915
1916
1917
1918
1919
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
1920
    .inspect_err(|_| {
1921
1922
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
    })?;
1923
1924
1925
1926
1927

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1928
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1929
            tracing::error!("Shard {rank} crashed");
1930
1931
1932
1933
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1934
        match webserver.try_wait().unwrap() {
1935
1936
1937
1938
1939
1940
1941
1942
1943
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1944
    }
1945
1946

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1947
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1948
1949
1950
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1951
}