training.py 41.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
24
25
26
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
27
from megatron import get_args
28
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
from megatron.model import Float16Module
41
from megatron.model import ModelType
mohammad's avatar
mohammad committed
42
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
from megatron.initialize import set_jit_fusion_options
46
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
47
48
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
from megatron.model.vision.knn_monitor import compute_feature_bank
55

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
             forward_step_func,
68
             process_non_loss_data_func=None,
69
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
70
             args_defaults={}):
71
72
73
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
74
75
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
76
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
77
        4) train the modle using the forward_step_func.
78
79

    Arguments:
80
81
82
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
83
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
84
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
85
86
87
88
89
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
90
91
92
93
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
94
95
96
97
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
98
99
    """

100
    # Initalize and get arguments, timers, and Tensorboard writer.
101
102
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
103
104
    # Set pytorch JIT layer fusion options and warmup JIT functions.
    set_jit_fusion_options()
105

106
107
108
109
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
110
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
111
112
113
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
114
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
115
116
117
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

118
    args = get_args()
Mohammad's avatar
Mohammad committed
119
    timers = get_timers()
120
121

    # Model, optimizer, and learning rate.
122
    timers('model-and-optimizer-setup').start()
123
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
124
                                                               model_type)
125
    timers('model-and-optimizer-setup').stop()
126
127
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
128
129

    # Data stuff.
130
131
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
132
        all_data_iterators = [
133
134
135
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
136
137
138
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
139
140
141
142
143
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
144
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
145
146

    # Print setup timing.
147
148
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
149
    print_rank_0('training ...')
150
151

    iteration = 0
152
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
153
        iteration = train(forward_step_func,
154
                          model, optimizer, opt_param_scheduler,
155
156
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
157
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
158

159
160
161
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
162
                                   valid_data_iterator, model,
163
164
                                   iteration, process_non_loss_data_func,
                                   False)
165
166

    if args.save and iteration != 0:
167
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
168
169
170
171
172
173

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
174
175
                                   0, process_non_loss_data_func,
                                   True)
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
193
194
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
195
196
            iterations += 1
        # Reset
197
        update_num_microbatches(0, consistency_check=False)
198
199
200
201
202
203
204
205
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

206

207
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
208
    """Build the model."""
Mohammad's avatar
Mohammad committed
209
    args = get_args()
210
    args.model_type = model_type
211

212
    # Build model.
213
214
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
215
216
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
217
218
219
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
220
221
222
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
223
            this_model = model_provider_func(
224
225
226
                pre_process=pre_process,
                post_process=post_process
            )
227
            this_model.model_type = model_type
228
            model.append(this_model)
229
    else:
230
231
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
257

258
259
    if not isinstance(model, list):
        model = [model]
260

261
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
262
263
264
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
265
266
267
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
268

269
270
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
271
        print(' > number of parameters on (tensor, pipeline) '
272
              'model parallel rank ({}, {}): {}'.format(
273
274
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
275
276
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
277
278

    # GPU allocation.
279
280
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
281
282

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
283
284
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
285

286
287
288
289
290
291
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
292

293
294
295
296
297
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
298
299
300
301
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
302
303
304
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
305

306
    return model
307
308


309
def get_optimizer_param_scheduler(optimizer):
310
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
311
    args = get_args()
312

313
314
315
316
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
317
318
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
319
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
321
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
322
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
323
324
325
326
327
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
328
        update_train_iters(args)
329
330
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
331
332
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
333
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
334
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
335
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
336
            lr_warmup_steps = args.lr_warmup_samples
337
    else:
338
339
340
        raise Exception(
            'either train-iters or train-samples should be provided.')

341
    opt_param_scheduler = OptimizerParamScheduler(
342
        optimizer,
343
        max_lr=args.lr,
344
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
345
346
347
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
349
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
350
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
351
        wd_incr_style=args.weight_decay_incr_style,
352
353
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
354

355
    return opt_param_scheduler
356
357


358
359
360
361
362
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
363
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
364
    args = get_args()
365

366
    model = get_model(model_provider_func, model_type)
367

368
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
369
                                   (torchDDP, LocalDDP, Float16Module))
370
371
    optimizer = get_megatron_optimizer(unwrapped_model, no_wd_decay_cond,
                                       scale_lr_cond, lr_mult)
372

373
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
374
375

    if args.load is not None:
376
377
378
379
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
380
        timers('load-checkpoint').start()
381
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
382
        torch.distributed.barrier()
383
384
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
385
386
387
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
388
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
389
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
390
391
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
392
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
393
394
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
395
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
396
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
397
398
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
399

400
    return model, optimizer, opt_param_scheduler
401
402


403
def train_step(forward_step_func, data_iterator,
404
               model, optimizer, opt_param_scheduler):
405
406
407
408
409
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
410
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
411
412
        for partition in model:
            partition.zero_grad_buffer()
413
    optimizer.zero_grad()
414

415
    forward_backward_func = get_forward_backward_func()
416
417
418
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
419

420
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
421
    if args.empty_unused_memory_level >= 1:
422
423
        torch.cuda.empty_cache()

424
425
    # All-reduce if needed.
    if args.DDP_impl == 'local':
426
        timers('backward-params-all-reduce').start()
427
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
428
            model_module.allreduce_gradients()
429
        timers('backward-params-all-reduce').stop()
430

431
432
433
434
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
435
    timers('backward-embedding-all-reduce').start()
436
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
437
            mpu.get_pipeline_model_parallel_world_size() > 1:
438
439
440
441
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
442
443
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
444
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
445
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
446

447
448
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
449
450
451
452
453
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
454

Vijay Korthikanti's avatar
Vijay Korthikanti committed
455
456
457
    # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
    # stages to ensure that position embeddings parameters stay in sync.
    # This should only run for T5 models with pipeline parallelism
Vijay Korthikanti's avatar
Vijay Korthikanti committed
458
459
460
461
462
463
    if mpu.is_rank_in_position_embedding_group() and \
            mpu.get_pipeline_model_parallel_world_size() > 1 and \
            args.pipeline_model_parallel_split_rank is not None:
        unwrapped_model = model[0]
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
464
465
        assert args.DDP_impl == 'local', \
            'T5 model is only supported with local DDP mode'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
466
467
        grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
        torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
468
    timers('backward-embedding-all-reduce').stop()
469

Vijay Korthikanti's avatar
Vijay Korthikanti committed
470
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
471
472
473
474
475
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)


476
477
    # Update parameters.
    timers('optimizer').start()
478
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
479
480
    timers('optimizer').stop()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
481
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
482
483
484
485
486
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)


487
    # Update learning rate.
488
    if update_successful:
489
490
491
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
492
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
493
        skipped_iter = 0
494
495
496
    else:
        skipped_iter = 1

497
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
498
    if args.empty_unused_memory_level >= 2:
499
500
        torch.cuda.empty_cache()

501
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
502
503
504
505
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
506
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
507
508
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
509
510


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
511
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
512
                 loss_scale, report_memory_flag, skipped_iter,
513
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
514
515
516
517
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
518

mohammad's avatar
mohammad committed
519
520
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
521
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
522
523
524
525
526
527
528
529
530
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
531
532
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
533
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
534
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
535
    for key in loss_dict:
mohammad's avatar
mohammad committed
536
        if not skipped_iter:
537
538
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
539
540
541
542
543
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
544
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
545
546
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
547
548
549

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
550

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
551
552
553
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
554
555
556
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
557
    add_to_logging('forward-backward-send-forward-backward-recv')
558
559
560
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
561
    add_to_logging('backward-send-forward-recv')
562
    add_to_logging('backward-send-backward-recv')
563
    add_to_logging('backward-params-all-reduce')
564
    add_to_logging('backward-embedding-all-reduce')
565
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
566
    add_to_logging('optimizer-unscale-and-check-inf')
567
568
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
569
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
570
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
571

mohammad's avatar
mohammad committed
572
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
573
574
575
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
576
577
578
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
579
    # Tensorboard values.
580
581
582
583
584
585
586
587
588
589
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
590
        for key in loss_dict:
mohammad's avatar
mohammad committed
591
592
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
593
                              args.consumed_train_samples)
594
595
596
597
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
598
599
600
601
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
602
603
604
605
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
606
607
608
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
609
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
610
611
612
613
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
614
615
616
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
634
635

    if iteration % args.log_interval == 0:
636
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
637
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
638
        if writer:
639
640
641
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
642
643
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
644
        log_string += ' consumed samples: {:12d} |'.format(
645
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
646
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
647
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
648
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
649
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
650
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
651
652
653
654
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
655
656
657
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
658
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
659
660
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
661
662
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
663
664
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
665
666
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
667
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
668
669
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
670
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
671
        total_loss_dict[nan_iters_key] = 0
672
        print_rank_last(log_string)
673
674
675
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
676
677
678
679
680
681
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


682
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
683
684
685
686
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
687
    timers('save-checkpoint').start()
688
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
689
    torch.distributed.barrier()
690
691
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
692
693


694
def train(forward_step_func, model, optimizer, opt_param_scheduler,
695
696
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
697
    """Train the model function."""
Mohammad's avatar
Mohammad committed
698
699
    args = get_args()
    timers = get_timers()
700

701
702
703
    # Write args to tensorboard
    write_args_to_tensorboard()

704
    # Turn on training mode which enables dropout.
705
706
    for model_module in model:
        model_module.train()
707
708
709
710
711
712
713

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

714
    timers('interval-time').start()
715
    print_datetime('before the start of training step')
716
717
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
718
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
719
        args.curr_iteration = iteration
720
721
722
723
724
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
725
                       opt_param_scheduler)
726
        iteration += 1
727
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
728
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
729
                                       get_num_microbatches()
730
731

        # Logging.
732
        loss_scale = optimizer.get_loss_scale().item()
733
734
735
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
736
737
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
738
                                          iteration, loss_scale,
739
                                          report_memory_flag, skipped_iter,
740
                                          grad_norm, params_norm, num_zeros_in_grad)
741
742

        # Autoresume
743
744
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
745
            check_adlr_autoresume_termination(iteration, model, optimizer,
746
                                              opt_param_scheduler)
747
748
749
750
751
752

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
753
                                       valid_data_iterator, model,
754
755
                                       iteration, process_non_loss_data_func,
                                       False)
756

757
758
        # Checkpointing
        saved_checkpoint = False
759
760
761
762
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
763
                                         opt_param_scheduler)
764
765
766
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

767
768
769
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
770
                                     opt_param_scheduler)
771
772
            saved_checkpoint = True

773
774
775
776
777
778
779
780
781
782
783
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
784
                                             opt_param_scheduler)
785
                print_datetime('exiting program after {} minutes'.format(train_time))
786
787
                sys.exit()

788
        # Exiting based on iterations
789
        if args.exit_interval and iteration % args.exit_interval == 0:
790
791
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
792
                                         opt_param_scheduler)
793
            torch.distributed.barrier()
794
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
795
            sys.exit()
796

797

mohammad's avatar
mohammad committed
798
    return iteration
799
800


801
802
803
804
805
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
806
    """Evaluation."""
Mohammad's avatar
Mohammad committed
807
    args = get_args()
808

Vijay Korthikanti's avatar
Vijay Korthikanti committed
809
810
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
811

812
    # Turn on evaluation mode which disables dropout.
813
814
    for model_module in model:
        model_module.eval()
815
816
817
818
819
820
821
822
823
824

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
825

826
            forward_backward_func = get_forward_backward_func()
827
828
829
830
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

831
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
832
            if args.empty_unused_memory_level >= 1:
833
834
                torch.cuda.empty_cache()

835
836
837
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
838
                    for key in loss_dict:
839
840
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
841

842
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
843
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
844
                                           * get_num_microbatches()
845
846
847
848
849
850
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

851
    # Move model back to the train mode.
852
853
    for model_module in model:
        model_module.train()
854
855

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
856
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
857

858
    return total_loss_dict, collected_non_loss_data
859
860
861

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
862
863
                               iteration, process_non_loss_data_func,
                               verbose=False):
864
    """Helper function to evaluate and dump results on screen."""
865
    args = get_args()
Mohammad's avatar
Mohammad committed
866
867
    writer = get_tensorboard_writer()

868
869
870
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
871
872
873
874
875
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
876
        if writer:
mohammad's avatar
mohammad committed
877
            writer.add_scalar('{} validation'.format(key),
878
879
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
880
            writer.add_scalar('{} validation vs samples'.format(key),
881
882
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
883
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
884
                writer.add_scalar('{} validation ppl'.format(key), ppl,
885
                                  iteration)
mohammad's avatar
mohammad committed
886
                writer.add_scalar('{} validation ppl vs samples'.format(key),
887
                                  ppl, args.consumed_train_samples)
888

889
890
891
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

892
    length = len(string) + 1
893
894
895
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
896
897


Vijay Korthikanti's avatar
Vijay Korthikanti committed
898
def cyclic_iter(iter):
899
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
900
        for x in iter:
901
902
            yield x

903
904
905
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
906
    args = get_args()
907

908
909
910
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
911
912
913

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
914
915
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
916
        args.consumed_train_samples = args.iteration * args.global_batch_size
917
    if args.iteration > 0 and args.consumed_valid_samples == 0:
918
919
920
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
921

922
    # Data loader only on rank 0 of each model parallel group.
923
    if mpu.get_tensor_model_parallel_rank() == 0:
924
925

        # Number of train/valid/test samples.
926
927
928
929
930
931
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
932
        test_iters = args.eval_iters
933
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
934
935
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
936
937
938
939
940
941
942
943
944
945
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
946
947
948
949
950
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
951
952
953
954
955
956
957
958
959
960
961
962
963

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
964
965
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
966
967
968
969
970
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
971
972
973
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

974
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
975
976
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
977
978
979
    else:
        train_data_iterator = None

980
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
981
982
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
983
    else:
984
        valid_data_iterator = None
985

986
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
987
988
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
989
990
991
    else:
        test_data_iterator = None

992
    return train_data_iterator, valid_data_iterator, test_data_iterator