optimizer.py 57.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
# >>>
from lutil import pax, tp
34

Lawrence McAfee's avatar
Lawrence McAfee committed
35
DEBUG_ITERATION = 0 # 10
36
# <<<
mohammad's avatar
mohammad committed
37

Lawrence McAfee's avatar
Lawrence McAfee committed
38

mohammad's avatar
mohammad committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


54
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
59
60
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
64
65
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
66
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
68
69
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

70

mohammad's avatar
mohammad committed
71
72
73

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
75
76

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
77
                 params_have_main_grad,
78
                 use_contiguous_buffers_in_local_ddp):
79

mohammad's avatar
mohammad committed
80
81
82
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83
84
85
86
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
87
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88

89
        if self.use_contiguous_buffers_in_local_ddp:
90
91
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
92

Rewon Child's avatar
Rewon Child committed
93
    def get_parameters(self):
94
95
96
97
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
98
99
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
100

Lawrence McAfee's avatar
Lawrence McAfee committed
101
    def clip_grad_norm(self, clip_grad, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
102
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
103
        return
Lawrence McAfee's avatar
Lawrence McAfee committed
104
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
105
106
        params = self.get_parameters()
        return clip_grad_norm_fp32(params, clip_grad, ITERATION = ITERATION)
107

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
108

Rewon Child's avatar
Rewon Child committed
109
110
111
112
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
113

mohammad's avatar
mohammad committed
114
115
116
117
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118

mohammad's avatar
mohammad committed
119
120
    @abstractmethod
    def get_loss_scale(self):
121
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
122
123
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
124

mohammad's avatar
mohammad committed
125
126
127
128
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
129

Lawrence McAfee's avatar
Lawrence McAfee committed
130
    @abstractmethod
131
    def reduce_grads(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
132
133
134
        pass


mohammad's avatar
mohammad committed
135
136
137
138
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
139

Lawrence McAfee's avatar
Lawrence McAfee committed
140
141
142
143
144
    @abstractmethod
    def gather_params(self):
        pass


145
146
    @abstractmethod
    def reload_model_params(self):
147
148
149
150
151
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
152
153
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
154

mohammad's avatar
mohammad committed
155
156
157
158
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
159

mohammad's avatar
mohammad committed
160
161
162
163
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
164

mohammad's avatar
mohammad committed
165
166
167
168
169
170
171
172
173
174
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
175

mohammad's avatar
mohammad committed
176
177
178
179
180
181
182
183
184
185
186
187
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


Lawrence McAfee's avatar
Lawrence McAfee committed
188
class BaseFloat16Optimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
189
190

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
191
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
192
193
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
194

Lawrence McAfee's avatar
Lawrence McAfee committed
195
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
196
            optimizer, clip_grad, log_num_zeros_in_grad,
197
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
198

199
200
201
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
202
        self.bf16 = bf16
mohammad's avatar
mohammad committed
203
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
204
205
206
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
207
208
209

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
210
211
212
213
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
214
215

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
216
217
218
219
220
221
222
223
224
225
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
226

Lawrence McAfee's avatar
Lawrence McAfee committed
227
228
229
230
231
232
233

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
234
235
236
237
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


Lawrence McAfee's avatar
Lawrence McAfee committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def _unscale_main_grads_and_check_for_nan(self):

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
252
253
254
255
256
        # >>>
        # torch.distributed.all_reduce(self.found_inf,
        #                              op=torch.distributed.ReduceOp.MAX,
        #                              group=mpu.get_model_parallel_group())
        # +++
Lawrence McAfee's avatar
Lawrence McAfee committed
257
        torch.distributed.all_reduce(self.found_inf,
258
259
                                     op=torch.distributed.ReduceOp.MAX)
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
260
261
262
263
264
265

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
266
267
268
269
270
271
272
273
274
275
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    @classmethod
    def debug_general(cls, ITERATION, key, value):
        from megatron import get_args
        args = get_args()
        my_rank = torch.distributed.get_rank()
        if ITERATION != DEBUG_ITERATION:
            return
        for r in range(torch.distributed.get_world_size()):
            if my_rank == r:
276
                print("            + %4s; [r%d]; %s, %.12e" % ("fix" if args.use_distributed_optimizer else "main", my_rank, key, value))
Lawrence McAfee's avatar
Lawrence McAfee committed
277
278
279
280
281
282
283
284
            torch.distributed.barrier()
        torch.distributed.barrier()
        # if my_rank == 0:
        #     raise Exception("debug.")
        # else:
        #     exit(0)
        exit(0)

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def _debug_model(self, ITERATION, key, use_param):
        tensors = [
            (p.float() if use_param else p.main_grad.float())
            for m in self.models for p in m.parameters()
        ]
        # pax(0, {
        #     "params" : params,
        #     "params / abs" : [ torch.abs(p) for p in params ],
        #     "params / abs / sum" : [ torch.sum(torch.abs(p)) for p in params ],
        # })
        count = sum(t.nelement() for t in tensors)
        return self.debug_general(
            ITERATION,
            "model/%s, %s [count %d]" % (
                "param" if use_param else "grad",
                key,
                count,
            ),
            sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
        )
Lawrence McAfee's avatar
Lawrence McAfee committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    def _debug_main(self, ITERATION, key0, key1, f, ff):
        count = sum(
            p.nelement()
            for g in self.optimizer.param_groups
            for p in g["params"]
        )
        return self.debug_general(
            ITERATION,
            "main/%s, %s [count %d]" % (key1, key0, count),
            sum(ff(f(p))
                for g in self.optimizer.param_groups
                for p in g["params"]).item() / count,
        )
    # def debug_main_param_mean(self, ITERATION, key):
    #     return self._debug_main(
    #         ITERATION,
    #         key,
    #         "param mean",
    #         lambda p : p,
    #         torch.mean,
    #     )
326
327
328
329
330
331
    # def debug_main_param_sum(self, ITERATION, key):
    def debug_model_param(self, ITERATION, key):
        return self._debug_model(ITERATION, key, True)
    def debug_model_grad(self, ITERATION, key):
        return self._debug_model(ITERATION, key, False)
    def debug_main_param(self, ITERATION, key):
Lawrence McAfee's avatar
Lawrence McAfee committed
332
333
334
        return self._debug_main(
            ITERATION,
            key,
335
            "param", # sum",
Lawrence McAfee's avatar
Lawrence McAfee committed
336
337
338
339
340
341
342
343
344
345
346
347
            # lambda p : p,
            lambda p : torch.abs(p),
            torch.sum,
        )
    # def debug_main_grad_mean(self, ITERATION, key):
    #     return self._debug_main(
    #         ITERATION,
    #         key,
    #         "grad mean",
    #         lambda p : p.grad,
    #         torch.mean,
    #     )
348
349
    # def debug_main_grad_sum(self, ITERATION, key):
    def debug_main_grad(self, ITERATION, key):
Lawrence McAfee's avatar
Lawrence McAfee committed
350
351
352
        return self._debug_main(
            ITERATION,
            key,
353
            "grad", # sum",
Lawrence McAfee's avatar
Lawrence McAfee committed
354
355
356
357
358
            # lambda p : p.grad,
            lambda p : torch.abs(p.grad),
            torch.sum,
        )
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
359
360

    @torch.no_grad()
361
    def step(self, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
362
363
364

        timers = get_timers()

365
366
367
368
369
        # >>>
        # self.debug_model_param(ITERATION, "before copy grad.")
        # self.debug_model_grad(ITERATION, "before copy grad.")
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
370
371
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
372
        self._copy_model_grads_to_main_grads(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
373
374
        timers('optimizer-copy-to-main-grad').stop()

375
        # >>>
376
377
378
379
        # self.debug_model_param(ITERATION, "after copy grad.")
        # self.debug_model_grad(ITERATION, "after copy grad.")
        # self.debug_main_param(ITERATION, "after copy grad.")
        # self.debug_main_grad(ITERATION, "after copy grad.")
380
381
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
397
398
399
400
401
                pax(0, {
                    "main params" : self.get_main_params(),
                    "main grads" : self.get_main_grads(),
                    "found_inf_flag" : found_inf_flag,
                })
Lawrence McAfee's avatar
Lawrence McAfee committed
402
403
404
405
406
407
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
Lawrence McAfee's avatar
Lawrence McAfee committed
408
            grad_norm = self.clip_grad_norm(self.clip_grad, ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
409
410
411
412
413
414
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

415
416
417
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
418
        # >>>
419
420
        # self.debug_main_param(ITERATION, "after step.")
        # self.debug_main_grad(ITERATION, "after step.")
Lawrence McAfee's avatar
Lawrence McAfee committed
421
422
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
423
424
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
425
        self._copy_main_params_to_model_params(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
426
427
        timers('optimizer-copy-main-to-model-params').stop()

428
        # >>>
429
430
        # self.debug_main_param(ITERATION, "after copy param.")
        # self.debug_main_grad(ITERATION, "after copy param.")
431
432
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
433
434
435
436
        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
465
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
466
467
468
469

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
470
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
471

mohammad's avatar
mohammad committed
472
        # ======================
473
        # main parameter stuff
mohammad's avatar
mohammad committed
474
475
476
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
477
478
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
479
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
480
481
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
482
483
484
485
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
486
            float16_params_this_group = []
mohammad's avatar
mohammad committed
487
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
488
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
489
490
491
492
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
493
494
495
496
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
497
                        # Create a copy
498
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
499
                        # Copy tensor model parallel attributes.
500
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
501
                                                                  param)
502
                        if hasattr(param, 'shared'):
503
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
504
                        # Replace the optimizer params with the new fp32 copy.
505
                        param_group['params'][i] = main_param
506

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
507
                        fp32_from_float16_params_this_group.append(main_param)
508
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
509
                        if param in self.optimizer.state:
510
511
512
                            # >>>
                            raise Exception("hi.")
                            # <<<
513
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
514
515
516
517
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
518
519
520
                        # >>>
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
521
522
523
524
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
525
526
527
528
529
530
531
532
533
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
534
535
536
537
538
539
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

Lawrence McAfee's avatar
Lawrence McAfee committed
540
541
542
543
544
545
546
547
548
549
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # params = self.get_parameters()
        # pax(0, {
        #     # "params / 0" : params[0],
        #     "params" : [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ (param_is_not_tensor_parallel_duplicate(p.grad), tp(p.grad)) for p in params ],
        # })
        # <<<

mohammad's avatar
mohammad committed
550
551
552

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
553
554
555
556
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
557
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
558
            _zero_grad_group_helper(group, set_to_none)
559
560
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
561
562
563
564
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


565
    # >>>
566
    def reduce_grads(self, model):
567
568
569
570
571
572
573
574
575
576
577
578
579

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
580

581
582
583
584
585
586
        # >>>
        # pax(0, {
        #     "grads" : [ p.main_grad for m in model for p in m.parameters() ],
        # })
        # <<<

587
588
589
590
591
592
593
        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
            for model_module in model:
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

594
595
596
597
598
599
        # >>>
        # pax(0, {
        #     "grads" : [ p.main_grad for m in model for p in m.parameters() ],
        # })
        # <<<

600
601
602
603
604
605
606
        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
607
608
609
            # >>>
            raise Exception("hi.")
            # <<<
610
611
612
613
614
615
616
617
618
619
620
621
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
622
623
624
625
626
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
627
                # +++
628
629
630
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
631
632
633
634
635
636
637
638
639
640
641
642
643
644
                # <<<

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
645
646
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
647
            # +++
648
649
650
651
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
652
653
654
            # <<<
        timers('backward-embedding-all-reduce').stop()

Lawrence McAfee's avatar
Lawrence McAfee committed
655
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
656
        pass
Lawrence McAfee's avatar
Lawrence McAfee committed
657

658
    def _copy_model_grads_to_main_grads(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
659
660
661
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
662
            for model_param, main_param in zip(model_group, main_group):
663
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
664
665
666
667
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
668
669
670
671
672

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
673
                if self.params_have_main_grad and \
674
                   not self.use_contiguous_buffers_in_local_ddp:
675
676
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
677
678
679
680
681
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
682

683
684
685
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
686
                    if not self.use_contiguous_buffers_in_local_ddp:
687
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
688

689
690
691
692
693
694
695
696
697
698
        # >>>
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model grads" :
        #         [ p.main_grad for m in self.models for p in m.parameters() ],
        #     })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
699
700
    def _collect_main_grad_data_for_unscaling(self):

701
        main_grads = []
Lawrence McAfee's avatar
Lawrence McAfee committed
702
703

        # fp32 params from float16 ones.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
704
        for main_group in self.fp32_from_float16_groups:
705
706
707
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
708
709
710

        # pax(1, {"main_grads": main_grads})

mohammad's avatar
mohammad committed
711
        # Append fp32 parameters.
712
713
714
715
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
716
717
718
719
720
        
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # pax(1, {"main_grads": [ (param_is_not_tensor_parallel_duplicate(t), tp(t)) for t in main_grads ]})
        # <<<
mohammad's avatar
mohammad committed
721

Lawrence McAfee's avatar
Lawrence McAfee committed
722
        return main_grads
mohammad's avatar
mohammad committed
723
724


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
725
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
726
        model_data = []
727
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
728
729
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
730
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
731
                model_data.append(model_param.data)
732
733
                main_data.append(main_param.data)
        return model_data, main_data
734
735


736
    def _copy_main_params_to_model_params(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
737
738
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
739
740
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)
741
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
742
743
744
745
746
747
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model params" : [p for m in self.models for p in m.parameters()],
        #     })
748
        # <<<
749
750
751


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
752
753
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
754
755
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
756
757


mohammad's avatar
mohammad committed
758
759
760
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
761
762
763
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
764
765
766
767
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
768
769
770
771
772
773
774
775
776
777
778
779
780
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
781
782
783
784
785
786
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
787

788
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
789
790
791
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
792
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
793
794
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
795
796
797
798
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


799
# >>>
800
import math
801

802
from megatron import get_args
803

Lawrence McAfee's avatar
Lawrence McAfee committed
804
805
806
807
808
809
810
811
812
813
814
# class ShardIndex:
class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)

815
# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
Lawrence McAfee's avatar
Lawrence McAfee committed
816
817
# class Float16DistributedOptimizer(MegatronOptimizer):
class Float16DistributedOptimizer(BaseFloat16Optimizer):
818

819
    # >>>
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
    # @classmethod
    # def test_reduce_scatter(cls):

    #     torch.manual_seed(mpu.get_data_parallel_rank())
    #     size = (20,)
    #     dtype = torch.float
    #     device = torch.cuda.current_device()
    #     data_parallel_world_size = mpu.get_data_parallel_world_size()
    #     data_parallel_group = mpu.get_data_parallel_group()

    #     input_list = [
    #         # torch.randn(size, dtype = dtype, device = device)
    #         5 * torch.randint(low = 1, high = 3, size = size, dtype = dtype, device = device)
    #         for _ in range(data_parallel_world_size)
    #     ]
    #     output = torch.empty(size, dtype = dtype, device = device)

    #     torch.distributed.reduce_scatter(
    #         output,
    #         input_list,
    #         group = data_parallel_group,
    #     )

    #     if torch.distributed.get_rank() == 0:
    #         print(output)
    #     pax(0, {
    #         "data_parallel_world_size" : data_parallel_world_size,
    #         "data_parallel_group" : data_parallel_group,
    #         "input_list" : input_list,
    #         "output" : tp(output),
    #     })
851
852
    # <<<

853
    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
854
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):
855

Lawrence McAfee's avatar
Lawrence McAfee committed
856
857
        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
858
        param_shard_map = {}
Lawrence McAfee's avatar
Lawrence McAfee committed
859
        for param, param_world_indexes in param_world_index_map.items():
860

Lawrence McAfee's avatar
Lawrence McAfee committed
861
862
863
            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
864
                0,
Lawrence McAfee's avatar
Lawrence McAfee committed
865
866
867
868
869
870
871
872
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
Lawrence McAfee's avatar
Lawrence McAfee committed
873
874
875
                # param_world_shard = param_local_shard.normalize(param_world_start)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
876
877
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
Lawrence McAfee's avatar
Lawrence McAfee committed
878
                param_shard_map[param] = {
879
880
881
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
882
883
                }

Lawrence McAfee's avatar
Lawrence McAfee committed
884
        # pax(0, {"param_shard_map": [ str((str(p.shape), s)) for p,s in param_shard_map.items() ]})
885
886
887
888

        return param_shard_map

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
889
    def get_model_gbuf_shard(cls, model, dtype):
890

Lawrence McAfee's avatar
Lawrence McAfee committed
891
892
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
893
894

        # Grad buffer shard.
Lawrence McAfee's avatar
Lawrence McAfee committed
895
896
897
898
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

899
900
901
902
903
904
905
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
Lawrence McAfee's avatar
Lawrence McAfee committed
906
907
908
909
910
911
912
913
914
915
916
        gbuf_local_shard = gbuf_world_shard.normalize()

        # Param shards.
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
917
            "world_all" : gbuf_world_all_shards,
Lawrence McAfee's avatar
Lawrence McAfee committed
918
            "param_map" : param_shard_map,
919
920
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
921
        # pax(1, {"data": data})
922

Lawrence McAfee's avatar
Lawrence McAfee committed
923
        return data
924
925

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
926
    def get_model_gbuf_shard_map(cls, model):
927
        return {
Lawrence McAfee's avatar
Lawrence McAfee committed
928
            dtype : cls.get_model_gbuf_shard(model, dtype)
929
930
931
            for dtype in model._grad_buffers
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
932
933
    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
934

Lawrence McAfee's avatar
Lawrence McAfee committed
935
936
937
938
939
940
941
942
943
944
945
946
947
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    # assert param not in param_size_map
                    # param_size_map[param] = param_shard_map["local"].size
                    param_gbuf_map[param] = (model_index, dtype)
                    # pax(0, {
                    #     "dtype" : dtype,
                    #     "gbuf_shard_map" : gbuf_shard_map,
                    #     "param" : tp(param),
                    #     "param_shard_map" : param_shard_map,
                    # })
948

Lawrence McAfee's avatar
Lawrence McAfee committed
949
950
951
952
953
954
        # pax(0, {
        #     "model_gbuf_shards" : model_gbuf_shards,
        #     # "param_size_map" :
        #     # [ (str(p.shape), s) for p, s in param_size_map.items() ],
        #     "param_gbuf_map" : param_gbuf_map,
        # })
955

Lawrence McAfee's avatar
Lawrence McAfee committed
956
        return param_gbuf_map
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
978
                    param_size = gbuf_shard_map["param_map"][param]["param"].size
979
980
981
982
983
984
985
986

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

987
988
989
990
991
992
993
994
995
996
                    # >>>
                    # if torch.distributed.get_rank() == 1:
                    #     print(">>> [%d] ... group %d, size %d, param %s. <<<" % (
                    #         torch.distributed.get_rank(),
                    #         group_index,
                    #         param_size,
                    #         str(tuple(param.shape)),
                    #     ))
                    # <<<

997
998
999
1000
1001
1002
        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        # pax(0, {
1003
1004
1005
1006
1007
1008
        #     "param_group_map": [
        #         (g, str(p.shape))
        #         for p, g in param_group_map.items()
        #     ],
        #     "group_shards" : group_shards,
        # })
1009
1010
1011

        return group_shards

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

        # Allocate main param/grad shard.
        # ** torch.nn.Parameter ??
        # ** MemoryBuffer ??
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
        
        # main_param_shards = []
        for group_index, group_shard in enumerate(opt_group_shards):

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # ** todo: for dtype in model_main_dtypes ........ **

            # Allocate shard.
            # if group_size == 0:
            #     main_param = None
            # else:
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

            # main_param_shards.append(main_param)
            group_shard["orig_group"]["params"] = [ main_param ]

            # # Update optimizer group.
            # self.optimizer.param_groups[group_index]["params"] = [ main_param ]

        # pax(1, {
        #     "opt_group_shards" : opt_group_shards,
        #     "main_param_shards" : main_param_shards,
        # })

        # return main_param_shards

1053
1054
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
1055
                 bf16, grad_scaler, models):
1056
1057
1058

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
Lawrence McAfee's avatar
Lawrence McAfee committed
1059
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
1060
            bf16, grad_scaler, models)
1061

1062
1063
        # >>>
        args = get_args()
1064
        assert args.use_contiguous_buffers_in_local_ddp # already checked in args
1065
        # <<<
1066

Lawrence McAfee's avatar
Lawrence McAfee committed
1067
1068
1069
1070
        # # Data parallel info.
        # self.data_parallel_group = mpu.get_data_parallel_group()
        # self.data_parallel_rank = mpu.get_data_parallel_rank()
        # self.data_parallel_world_size = mpu.get_data_parallel_world_size()
1071

1072
1073
1074
1075
        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
Lawrence McAfee's avatar
Lawrence McAfee committed
1076
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)
1077

1078
1079
        # pax(0, {"param_gbuf_map": [ (str(tuple(p.shape)), d) for p, d in self.param_gbuf_map.items() ]})

1080
1081
1082
1083
1084
        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

1085
        # pax(0, {**{"opt_group_shards / %d" % i : g for i, g in enumerate(self.opt_group_shards)}})
Lawrence McAfee's avatar
Lawrence McAfee committed
1086

1087
1088
1089
1090
        # Allocate main param shards.
        # self.main_param_shards = \
        #     self.allocate_main_param_shards(self.opt_group_shards)
        self.allocate_main_param_shards(self.opt_group_shards)
1091

1092
        # >>>
1093
1094
1095
1096
1097
        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        #     "main_param_shards" : self.main_param_shards,
        # })
1098
1099
        # <<<

1100
1101
1102
1103
1104
        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
Lawrence McAfee's avatar
Lawrence McAfee committed
1105
1106
        self.optimizer.load_state_dict(self.optimizer.state_dict())

1107
1108
1109
1110
1111
1112
        # pax(0, {
        #     # "opt_group_shards" : self.opt_group_shards,
        #     # "param_groups" : self.optimizer.param_groups,
        #     "optimizer" : self.optimizer,
        #     "optimizer / state" : self.optimizer.state,
        # })
1113
        # pax(1, {
1114
1115
1116
1117
1118
        #     "optimizer" : self.optimizer,
        #     **{"optimizer / param_groups / %d" % i : g
        #        for i, g in enumerate(self.optimizer.param_groups)},
        #     "optimizer / state" : self.optimizer.state,
        #     "optimizer / state_dict" : self.optimizer.state_dict(),
1119
1120
1121
1122
        # })

        # Initialize main params.
        self._copy_model_params_to_main_params()
1123

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
    @staticmethod
    def has_nan_debug(tensors):
        if isinstance(tensors, torch.Tensor):
            tensors = [ tensors ]
        assert isinstance(tensors, list)
        has_nans = [ (not torch.all(torch.isfinite(t)).item()) for t in tensors ]
        has_nan = any(has_nans)
        return has_nan
    def get_local_model_param_views(self):
        '''** FOR DEBUGGING. **'''
        model_param_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                model_param_shard = gbuf_shard_map["param"]
                model_param_views.append(
                    param.view(-1)[model_param_shard.start:model_param_shard.end])
        return model_param_views
    def get_local_model_grad_views(self):
        '''** FOR DEBUGGING. **'''
        model_grad_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf = self.models[model_index]._grad_buffers[dtype].data
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                gbuf_world_shard = gbuf_shard_map["gbuf_world"]
                model_grad_views.append(
                    gbuf[gbuf_world_shard.start:gbuf_world_shard.end])
        return model_grad_views
    def get_world_model_params(self):
        '''** FOR DEBUGGING. **'''
        return [ p for m in self.models for p in m.parameters() ]
1160
1161
1162
    def get_world_model_grads(self):
        '''** FOR DEBUGGING. **'''
        return [ p.main_grad for p in self.get_world_model_params() ]
1163
1164
1165
1166
1167

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
1168
    def get_main_param(self, group_index):
1169
1170
        # return self.optimizer.param_groups[group_index]["params"][0]
        return self.get_main_params()[group_index]
1171
1172
1173
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

1174
1175
1176
1177
1178
1179
    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")
Lawrence McAfee's avatar
Lawrence McAfee committed
1180
1181
1182

    def zero_grad(self, set_to_none=True):

Lawrence McAfee's avatar
Lawrence McAfee committed
1183
        model_params = []
Lawrence McAfee's avatar
Lawrence McAfee committed
1184
1185
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1186
1187
1188
1189
                model_params.extend(param_map.keys())
        # main_params = []
        # for main_group in self.optimizer.param_groups:
        #     main_params.extend(main_group["params"])
Lawrence McAfee's avatar
Lawrence McAfee committed
1190

1191
1192
        # ** using contiguous buffer; don't set_to_none **
        _zero_grad_group_helper(model_params, set_to_none = False) # set_to_none)
Lawrence McAfee's avatar
Lawrence McAfee committed
1193
        # _zero_grad_group_helper(params, set_to_none = False)
Lawrence McAfee's avatar
Lawrence McAfee committed
1194

1195
        # pax(0, {"model_params": model_params})
1196

1197
1198
    def get_model_grad_buffer_dp_views(self):

Lawrence McAfee's avatar
Lawrence McAfee committed
1199
        # >>>
1200
1201
1202
        # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
        args = get_args()
        assert args.use_contiguous_buffers_in_local_ddp
Lawrence McAfee's avatar
Lawrence McAfee committed
1203
        # <<<
1204
1205
1206
1207
1208
1209

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf_shard in self.model_gbuf_shards[model_index].items():
                world_shards = gbuf_shard["world_all"]
1210
1211
                gbuf = model._grad_buffers[dtype].data
                gbuf_views = [ gbuf[s.start:s.end] for s in world_shards ]
1212
1213
                gbuf_view_items.append((model_index, dtype, gbuf_views))

1214
1215
1216
1217
1218
                # pax(0, {
                #     "world_shards" : world_shards,
                #     "gbuf_views" : gbuf_views,
                # })

1219
1220
1221
1222
        # pax(0, {"gbuf_view_items": gbuf_view_items})

        return gbuf_view_items

1223
    def reduce_grads(self, model):
1224

1225
1226
1227
1228
        # >>>
        timers = get_timers()
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
1229
1230
1231
1232
1233
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync word embedding params.

        # ... todo ...

1234
1235
1236
1237
1238
1239
1240
        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
1241
1242
1243
            # >>>
            raise Exception("hi.")
            # <<<
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
1259
                    raise Exception("only 'main_grad' supported for distrib-opt.")
1260
1261
1262
1263
1264
1265
1266
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
                # +++
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
                # <<<
1267
        timers('backward-embedding-all-reduce').stop()
1268

Lawrence McAfee's avatar
Lawrence McAfee committed
1269
1270
1271
1272
1273
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync T5 position embedding params.

        # ... todo ...

1274
1275
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Reduce-scatter.
Lawrence McAfee's avatar
Lawrence McAfee committed
1276
        data_parallel_rank = mpu.get_data_parallel_rank()
1277
        data_parallel_world_size = mpu.get_data_parallel_world_size()
Lawrence McAfee's avatar
Lawrence McAfee committed
1278
        data_parallel_group = mpu.get_data_parallel_group()
1279

1280
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
Lawrence McAfee's avatar
Lawrence McAfee committed
1281

1282
        # pax(0, {"gbuf_views": [g for item in gbuf_view_items for g in item[2]]})
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
        # pax(0, {"gbufs": [
        #     g.data
        #     for m in self.models
        #     for g in m._grad_buffers.values()
        # ]})

        # >>>
        # buffer_.data /= mpu.get_data_parallel_world_size()
        # torch.distributed.all_reduce(
        #     buffer_.data, group=mpu.get_data_parallel_group())
        # <<<
1294

1295
        for model_index, dtype, gbuf_views in gbuf_view_items:
1296
1297
            # coalesced /= mpu.get_data_parallel_world_size()
            gbuf = self.models[model_index]._grad_buffers[dtype].data
1298
1299
1300
1301
1302

            # >>>
            # ~~ distributed.py ~~
            # gbuf /= data_parallel_world_size
            # torch.distributed.all_reduce(gbuf, group=data_parallel_group)
1303
1304
1305
            # pax(0, {
            #     "gbuf" : tp(gbuf),
            # })
1306
1307
1308
1309
1310
1311
1312
            # <<<

            # torch.mul(gbuf.data, 1. / data_parallel_world_size, out = gbuf.data)
            # gbuf_views = [ t / data_parallel_world_size for t in gbuf_views ]
            gbuf /= data_parallel_world_size

            # if 1:
1313
1314
1315
1316
1317
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
1318
1319
1320
1321
1322
            # else:
            #     torch.distributed.all_reduce(
            #         gbuf,
            #         group = data_parallel_group,
            #     )
1323
            
1324
        # pax(0, {"gbuf_views": [g for item in gbuf_view_items for g in item[2]]})
Lawrence McAfee's avatar
Lawrence McAfee committed
1325

1326
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
1327

1328
1329
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
1330

1331
1332
        gbuf_view_items = self.get_model_grad_buffer_dp_views()

Lawrence McAfee's avatar
Lawrence McAfee committed
1333
        # All-gather updated main params.
1334
1335
1336
1337
1338
1339
1340
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )

1341
        # Each model param now contains its updated values in its
Lawrence McAfee's avatar
Lawrence McAfee committed
1342
        # '.main_grad' field.
1343
1344
        for param in self.param_gbuf_map:
            param.detach().copy_(param.main_grad)
1345

1346
        # pax(0, {"gbuf_view_items": gbuf_view_items})
1347

Lawrence McAfee's avatar
Lawrence McAfee committed
1348
    def _collect_main_grad_data_for_unscaling(self):
1349
        return [ g.data for g in self.get_main_grads() ]
Lawrence McAfee's avatar
Lawrence McAfee committed
1350

1351
1352
1353
    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
1354
            main_param = self.get_main_param(group_index)
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
1366
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]
1367

1368
                main_view.detach().copy_(model_view)
1369

1370

1371
1372
    def _copy_model_grads_to_main_grads(self, ITERATION):

Lawrence McAfee's avatar
Lawrence McAfee committed
1373
        for group_index, group_shard in enumerate(self.opt_group_shards):
1374
            for model_param, main_shard in group_shard["param_map"].items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1375

1376
                # Model shard.
1377
                model_index, dtype = self.param_gbuf_map[model_param]
Lawrence McAfee's avatar
Lawrence McAfee committed
1378
                model_shard = self.model_gbuf_shards \
1379
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
Lawrence McAfee's avatar
Lawrence McAfee committed
1380
1381
1382

                assert main_shard.size == model_shard.size

1383
1384
1385
1386
1387
1388
1389
                # pax(0, {
                #     "model_param" : tp(model_param),
                #     "main_shard" : str(main_shard),
                #     "param shard" : self.model_gbuf_shards \
                #     [model_index][dtype]["param_map"][model_param],
                # })

Lawrence McAfee's avatar
Lawrence McAfee committed
1390
                # Copy from DDP's contiguous buffer to main shard's grad.
1391
                model_grad = self.models[model_index]._grad_buffers[dtype].data
1392
                main_grad = self.get_main_grad(group_index)
Lawrence McAfee's avatar
Lawrence McAfee committed
1393

Lawrence McAfee's avatar
Lawrence McAfee committed
1394
                # Copy sub-range within tensor.
1395
1396
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]
Lawrence McAfee's avatar
Lawrence McAfee committed
1397

1398
                main_view.detach().copy_(model_view)
Lawrence McAfee's avatar
Lawrence McAfee committed
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413

                # pax(0, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "param" : tp(param),
                #     "model_index" : model_index,
                #     "gbuf_dtype" : str(gbuf_dtype),
                #     "model_grad_tensor" : tp(model_grad_tensor),
                #     "main_grad_tensor" : tp(main_grad_tensor),
                #     "model_grad_view" : tp(model_grad_view),
                #     "main_grad_view" : tp(main_grad_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

Lawrence McAfee's avatar
Lawrence McAfee committed
1414
        # >>>
1415
1416
1417
1418
1419
1420
1421
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** fix. **",
        #         "ITERATION" : ITERATION,
        #         # "model grads" : self.get_world_model_grads(),
        #         "main_grads" : self.get_main_grads(),
        #     })
Lawrence McAfee's avatar
Lawrence McAfee committed
1422
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
1423

1424

1425
    def _copy_main_params_to_model_params(self, ITERATION):
1426
1427

        for group_index, group_shard in enumerate(self.opt_group_shards):
1428
            for model_param, main_shard in group_shard["param_map"].items():
1429

1430
                model_index, dtype = self.param_gbuf_map[model_param]
1431
                model_shard = self.model_gbuf_shards \
1432
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
1433
1434
1435
1436

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
1437
                model_param = self.models[model_index]._grad_buffers[dtype].data
1438
                main_param = self.get_main_param(group_index)
1439
1440

                # Copy sub-range within tensor.
1441
1442
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]
1443
1444
1445
1446

                model_view.detach().copy_(main_view)

                # Debug.
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
                # pax(1, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "model_param" : tp(model_param),
                #     "model_index" : model_index,
                #     "dtype" : str(dtype),
                #     "model_param" : tp(model_param),
                #     "main_param" : tp(main_param),
                #     "model_view" : tp(model_view),
                #     "main_view" : tp(main_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })
1460

Lawrence McAfee's avatar
Lawrence McAfee committed
1461
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
1462
1463
1464
1465
1466
1467
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** fix. **",
        #         "ITERATION" : ITERATION,
        #         "model params" : self.get_world_model_params(),
        #     })
Lawrence McAfee's avatar
Lawrence McAfee committed
1468
        # <<<
1469

1470
1471
# <<<

mohammad's avatar
mohammad committed
1472

mohammad's avatar
mohammad committed
1473
1474
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1475
1476
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
1477
                 params_have_main_grad,
1478
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1479
1480
1481

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
1482
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
1501
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
1502

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1503
1504
1505
1506
1507
1508
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

1509
1510
1511
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
1512
                    if not self.use_contiguous_buffers_in_local_ddp:
1513
1514
                        param.main_grad = None

mohammad's avatar
mohammad committed
1515
        # Clip gradients.
1516
        grad_norm = None
mohammad's avatar
mohammad committed
1517
        if self.clip_grad > 0.0:
1518
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
1519

Rewon Child's avatar
Rewon Child committed
1520
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1521
1522
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
1523

mohammad's avatar
mohammad committed
1524
1525
1526
1527
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
1528
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
1529
1530


1531
1532
1533
1534
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
1535
1536
1537
1538
1539
1540
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)