training.py 42.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
40
from megatron.model import FP16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
mohammad's avatar
mohammad committed
42

Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
Neel Kant's avatar
Neel Kant committed
47
from megatron.model.realm_model import ICTBertModel
48
from megatron.utils import check_adlr_autoresume_termination
Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
50
from megatron.utils import calc_params_l2_norm
Mostofa Patwary's avatar
Mostofa Patwary committed
51
from megatron.utils import report_memory
52
53


54
55
56
57
58
59
60
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


61
62
63
64
def pretrain(train_valid_test_dataset_provider, 
             model_provider,
             forward_step_func, 
             extra_args_provider=None, 
Vijay Korthikanti's avatar
Vijay Korthikanti committed
65
             args_defaults={}):
66
67
68
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
69
70
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
71
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
72
        4) train the modle using the forward_step_func.
73
74

    Arguments:
75
76
77
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
78
79
80
81
82
83
84
85
86
87
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
88
89
    """

90
    # Initalize and get arguments, timers, and Tensorboard writer.
91
92
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
93

94
95
96
97
98
99
100
101
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
102
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
103
104
105
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

106
    args = get_args()
Mohammad's avatar
Mohammad committed
107
    timers = get_timers()
108
109

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
110
111
112
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
113
114
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
115
116

    # Data stuff.
117
118
119
120
121
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
mshoeybi's avatar
mshoeybi committed
122
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
123
124
125

    # Print setup timing.
    print_rank_0('done with setups ...')
126
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
127
    print_rank_0('training ...')
128
129

    iteration = 0
130
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
131
132
133
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
134
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
135

136
137
138
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
139
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
140
                                   iteration, False)
141
142

    if args.save and iteration != 0:
143
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
144
145
146
147
148
149

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
150
                                   0, True)
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
168
169
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
170
171
            iterations += 1
        # Reset
172
        update_num_microbatches(0, consistency_check=False)
173
174
175
176
177
178
179
180
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

181

Mohammad's avatar
Mohammad committed
182
def get_model(model_provider_func):
183
    """Build the model."""
Mohammad's avatar
Mohammad committed
184
    args = get_args()
185
186

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
187
    model = model_provider_func()
188

189
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
190
191
192
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
193
194
195
    for param in model.parameters():
        mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)

196
197
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
198
        print(' > number of parameters on (tensor, pipeline) '
199
              'model parallel rank ({}, {}): {}'.format(
200
201
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
202
203
204
205
206
207
208
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
209
        model = FP16Module(model)
210
211
212

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
213
214
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
215
216
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
217
        model = LocalDDP(model)
218
219
        return model

220
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
221
                              'Exiting.'.format(args.DDP_impl))
222
223


Mohammad's avatar
Mohammad committed
224
def get_learning_rate_scheduler(optimizer):
225
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
226
    args = get_args()
227

228
229
230
231
232
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
233
234
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
235
236
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
237
238
239
240
241
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
242
        update_train_iters(args)
243
244
245
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
246
247
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
248
249
        else:
            warmup_steps = args.lr_warmup_samples
250
    else:
251
252
253
        raise Exception(
            'either train-iters or train-samples should be provided.')

254
255
    lr_scheduler = AnnealingLR(
        optimizer,
256
        max_lr=args.lr,
257
        min_lr=args.min_lr,
258
259
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
260
        decay_style=args.lr_decay_style,
261
262
263
264
265
266
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
267
def setup_model_and_optimizer(model_provider_func):
268
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
269
    args = get_args()
270

Mohammad's avatar
Mohammad committed
271
    model = get_model(model_provider_func)
272
273

    unwrapped_model = model
274
    while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16Module)):
275
276
277
        unwrapped_model = unwrapped_model.module
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
278
    lr_scheduler = get_learning_rate_scheduler(optimizer)
279
280

    if args.load is not None:
281
282
283
284
285
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
        timers('load checkpoint').start()
286
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
287
288
289
        torch.distributed.barrier()
        timers('load checkpoint').stop()
        timers.log(['load checkpoint'])
290
291
292
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
293
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
294
295
296
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
297
298
299
300
301
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

302
303
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
304
        print_rank_0("Initializing ICT from pretrained BERT model")
305
        unwrapped_model.init_state_dict_from_bert()
306
        if args.fp16:
Mostofa Patwary's avatar
Mostofa Patwary committed
307
            optimizer._copy_model_params_to_main_params()
Neel Kant's avatar
Neel Kant committed
308

309
310
311
    return model, optimizer, lr_scheduler


312
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
313
    """Communicate tensors between stages."""
314
315
316
317
318
319
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
320
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
321
322
323
    dtype = args.params_dtype
    if args.fp32_residual_connection:
        dtype = torch.float
324
325
326
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
327
                                       device=torch.cuda.current_device(),
328
                                       dtype=dtype)
329
330
331
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
332
                                       device=torch.cuda.current_device(),
333
                                       dtype=dtype)
334
335

    # Send tensors in both the forward and backward directions as appropriate.
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    ops = []
    if tensor_send_prev is not None:
        send_prev_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_prev,
                                               mpu.get_pipeline_model_parallel_prev_rank())
        ops.append(send_prev_op)
    if tensor_recv_prev is not None:
        recv_prev_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_prev,
                                               mpu.get_pipeline_model_parallel_prev_rank())
        ops.append(recv_prev_op)
    if tensor_send_next is not None:
        send_next_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_next,
                                               mpu.get_pipeline_model_parallel_next_rank())
        ops.append(send_next_op)
    if tensor_recv_next is not None:
        recv_next_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_next,
                                               mpu.get_pipeline_model_parallel_next_rank())
        ops.append(recv_next_op)
    reqs = torch.distributed.batch_isend_irecv(ops)
    for req in reqs:
        req.wait()
356
357
358
359
360

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
361
    """Backward step."""
Mohammad's avatar
Mohammad committed
362
363
    args = get_args()
    timers = get_timers()
364

365
366
367
368
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

369
    # Backward pass.
mohammad's avatar
mohammad committed
370
371
372
    if output_tensor_grad is None:
        output_tensor = optimizer.scale_loss(output_tensor)
    torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)
373
374
375
376
377
378
379
380
381

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


382
383
384
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
385
386
    args = get_args()

387
    if not mpu.is_pipeline_first_stage():
388
        timers('forward-recv').start()
389
390
391
392
393
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
394
        timers('forward-recv').stop()
395
396
397
398
    else:
        input_tensor = None

    # Forward model for one step.
399
    timers('forward-compute').start()
400
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
401
    timers('forward-compute').stop()
402
403
404

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
405
        output_tensor = loss / get_num_microbatches()
406
407
        losses_reduced.append(loss_reduced)
    else:
408
        timers('forward-send').start()
409
410
411
412
413
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
414
        timers('forward-send').stop()
415
416
417
418
419
420
421
422
423
424
425
426

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
427
        timers('backward-recv').start()
428
429
430
431
432
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
433
        timers('backward-recv').stop()
434
435

    # Backward pass for one step.
436
    timers('backward-compute').start()
437
438
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
439
    timers('backward-compute').stop()
440
441

    if not mpu.is_pipeline_first_stage():
442
        timers('backward-send').start()
443
444
445
446
447
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
448
        timers('backward-send').stop()
449
450


451
452
453
454
455
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
456
457
    args = get_args()

458
459
460
461
462
463
464
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
465
        output_tensor = loss / get_num_microbatches()
466
467
468
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
469
        timers('forward-send-backward-recv').start()
470
471
472
473
474
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
475
        timers('forward-send-backward-recv').stop()
476
477
478
479
480
481
482
483
484
485
486
487
488
489

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
490
        timers('backward-send-forward-recv').start()
491
492
493
494
495
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
496
        timers('backward-send-forward-recv').stop()
497
498
499
500
501
502
    else:
        input_tensor = None

    return input_tensor


503
504
505
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
506
507
    args = get_args()

508
    losses_reduced = []
mohammad's avatar
mohammad committed
509
    for i in range(get_num_microbatches()):
510
511
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
512
        output_tensor = loss / get_num_microbatches()
513
514
515
516
517
518
519
520
521
522
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
523

524
525
526
527
528
529
530

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
531
    num_microbatches = get_num_microbatches()
532
533
534
535
536
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
537
538
539
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
540
541
542
543
544

    input_tensors = []
    output_tensors = []
    losses_reduced = []

545
546
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
547
548
549
550
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
551

552
    # Before running 1F1B, need to receive first forward tensor.
553
554
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
555
    if num_microbatches_remaining > 0:
556
557
558
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
559
            timers('forward-recv').start()
560
561
562
563
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
564
            timers('forward-recv').stop()
565
566

    # Run 1F1B.
567
568
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
569
570
571
572
573
574
575
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

576
577
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
578
579
580
581
582
583
584
585
586
587
588
589
590
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
mohammad's avatar
mohammad committed
591
    optimizer.zero_grad()
592
593
594
595
596
597
598

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
599
600
601

    # All-reduce if needed.
    if args.DDP_impl == 'local':
602
        timers('backward-params-all-reduce').start()
603
604
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
605
        timers('backward-params-all-reduce').stop()
606

607
608
609
610
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
611
    timers('backward-embedding-all-reduce').start()
612
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
613
            mpu.get_pipeline_model_parallel_world_size() > 1:
614
        unwrapped_model = model
615
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16Module)):
616
617
            unwrapped_model = unwrapped_model.module

618
619
620
621
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
622
    timers('backward-embedding-all-reduce').stop()
623

624
625
    # Update parameters.
    timers('optimizer').start()
626
    update_successfull, grad_norm = optimizer.step()
627
628
629
    timers('optimizer').stop()

    # Update learning rate.
mohammad's avatar
mohammad committed
630
    if update_successfull:
631
632
633
634
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
635
        skipped_iter = 0
636
637
638
    else:
        skipped_iter = 1

639
    if mpu.is_pipeline_last_stage():
640
641
642
643
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
644
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
645
646
        return loss_reduced, skipped_iter, grad_norm
    return {}, skipped_iter, grad_norm
647
648


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
649
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
650
651
                 loss_scale, report_memory_flag, skipped_iter,
                 grad_norm, params_norm):
Mohammad's avatar
Mohammad committed
652
653
654
655
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
656

mohammad's avatar
mohammad committed
657
658
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
659
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
660
661
662
663
664
665
666
667
668
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
669
670
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
671
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
672
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
673
    for key in loss_dict:
mohammad's avatar
mohammad committed
674
        if not skipped_iter:
675
676
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
677
678
679
680
681
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
682
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
683
684
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
685
686
687

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
688

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
689
690
691
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
692
693
694
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
695
    add_to_logging('forward-send-backward-recv')
696
697
698
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
699
    add_to_logging('backward-send-forward-recv')
700
    add_to_logging('backward-params-all-reduce')
701
    add_to_logging('backward-embedding-all-reduce')
702
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
703
    add_to_logging('optimizer-unscale-and-check-inf')
704
705
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
706
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
707
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
708

mohammad's avatar
mohammad committed
709
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
710
711
712
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
713
714
715
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
716
    # Tensorboard values.
717
718
719
720
721
722
723
724
725
726
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
727
        for key in loss_dict:
mohammad's avatar
mohammad committed
728
729
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
730
                              args.consumed_train_samples)
731
        if args.log_loss_scale_to_tensorboard:
mohammad's avatar
mohammad committed
732
733
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
734
                              args.consumed_train_samples)
735
736
737
738
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
739
740
741
742
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
743
744
745
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
746
747
748

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
mohammad's avatar
mohammad committed
749
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
750
        if writer and torch.distributed.get_rank() == 0:
751
752
753
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
754
755
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
756
        log_string += ' consumed samples: {:12d} |'.format(
757
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
758
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
759
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
760
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
761
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
762
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
763
764
765
766
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
767
768
769
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
770
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
771
772
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
mohammad's avatar
mohammad committed
773
774
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
775
776
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
777
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
778
779
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
780
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
781
        total_loss_dict[nan_iters_key] = 0
782
        print_rank_last(log_string)
783
784
785
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
786
787
788
789
790
791
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


792
793
794
795
796
797
798
799
800
801
802
803
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
    timers('save checkpoint').start()
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
    timers('save checkpoint').stop()
    timers.log(['save checkpoint'])


804
def train(forward_step_func, model, optimizer, lr_scheduler,
805
          train_data_iterator, valid_data_iterator):
806
    """Train the model function."""
Mohammad's avatar
Mohammad committed
807
808
    args = get_args()
    timers = get_timers()
809

810
811
812
    # Write args to tensorboard
    write_args_to_tensorboard()

813
814
815
816
817
818
819
820
821
822
    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
823
    print_datetime('before the start of training step')
824
825
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
826
        update_num_microbatches(args.consumed_train_samples)
827
828
829
830
831
        loss_dict, skipped_iter, grad_norm = train_step(forward_step_func,
                                                        train_data_iterator,
                                                        model,
                                                        optimizer,
                                                        lr_scheduler)
832
        iteration += 1
833
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
834
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
835
                                       get_num_microbatches()
836
837

        # Logging.
838
        loss_scale = optimizer.get_loss_scale().item()
839
840
841
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
842
843
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
844
                                          iteration, loss_scale,
845
                                          report_memory_flag, skipped_iter,
mohammad's avatar
mohammad committed
846
                                          grad_norm, params_norm)
847
848

        # Autoresume
849
850
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
851
            check_adlr_autoresume_termination(iteration, model, optimizer,
852
                                              lr_scheduler)
853
854
855
856
857
858

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
859
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
860
                                       iteration, False)
861

862
863
864
865
866
867
868
869
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
886
        if args.exit_interval and iteration % args.exit_interval == 0:
Mostofa Patwary's avatar
Mostofa Patwary committed
887
888
889
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
890
            torch.distributed.barrier()
891
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
892
            sys.exit()
893

894

mohammad's avatar
mohammad committed
895
    return iteration
896
897


Mohammad's avatar
Mohammad committed
898
def evaluate(forward_step_func, data_iterator, model, verbose=False):
899
    """Evaluation."""
Mohammad's avatar
Mohammad committed
900
    args = get_args()
901
902
903
904
905
906
907
908
909
910
911
912
913

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
914

mohammad's avatar
mohammad committed
915
            for _ in range(get_num_microbatches()):
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
940

941
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
942
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
943
                                           * get_num_microbatches()
944
945
946
947
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
948
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
949
950
951
952
953

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
954
                               iteration, verbose=False):
955
    """Helper function to evaluate and dump results on screen."""
956
    args = get_args()
Mohammad's avatar
Mohammad committed
957
958
959
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
960
961
962
963
964
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
965
        if writer and is_last_rank():
mohammad's avatar
mohammad committed
966
            writer.add_scalar('{} validation'.format(key),
967
968
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
969
            writer.add_scalar('{} validation vs samples'.format(key),
970
971
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
972
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
973
                writer.add_scalar('{} validation ppl'.format(key), ppl,
974
                                  iteration)
mohammad's avatar
mohammad committed
975
                writer.add_scalar('{} validation ppl vs samples'.format(key),
976
                                  ppl, args.consumed_train_samples)
977
978

    length = len(string) + 1
979
980
981
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
982
983


Vijay Korthikanti's avatar
Vijay Korthikanti committed
984
def cyclic_iter(iter):
985
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
986
        for x in iter:
987
988
            yield x

989
990
991
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
992
    args = get_args()
993

994
995
996
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
997
998
999

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
1000
1001
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
1002
        args.consumed_train_samples = args.iteration * args.global_batch_size
1003
    if args.iteration > 0 and args.consumed_valid_samples == 0:
1004
1005
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
1006
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
1007
            args.eval_iters * args.global_batch_size
1008

1009
    # Data loader only on rank 0 of each model parallel group.
1010
    if mpu.get_tensor_model_parallel_rank() == 0:
1011
1012

        # Number of train/valid/test samples.
1013
1014
1015
1016
1017
1018
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
1019
        test_iters = args.eval_iters
1020
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
1021
1022
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
1033
1034
1035
1036
1037
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
1051
1052
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
1053
1054
1055
1056
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1057

1058
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1059
1060
1061
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

1062
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1063
1064
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
1065
1066
1067
    else:
        train_data_iterator = None

1068
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1069
1070
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
1071
    else:
1072
        valid_data_iterator = None
1073

1074
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1075
1076
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
1077
1078
1079
    else:
        test_data_iterator = None

1080
    return train_data_iterator, valid_data_iterator, test_data_iterator