training.py 42.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
28
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Neel Kant's avatar
Neel Kant committed
29
from megatron import get_args
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
41
42
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
47
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
48
from megatron.model.realm_model import ICTBertModel
49
from megatron.utils import check_adlr_autoresume_termination
50
from megatron.data.data_loaders import build_pretraining_data_loader
Mostofa Patwary's avatar
Mostofa Patwary committed
51
from megatron.utils import report_memory, params_grad_norm, params_global_norm, print_model, print_grads
52
53


54
55
56
57
58
59
60
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


61
def pretrain(train_valid_test_dataset_provider, model_provider,
62
             forward_step_func, extra_args_provider=None, args_defaults={}):
63
64
65
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
66
67
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
68
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
69
        4) train the modle using the forward_step_func.
70
71

    Arguments:
72
73
74
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
75
76
77
78
79
80
81
82
83
84
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
85
86
    """

87
    # Initalize and get arguments, timers, and Tensorboard writer.
88
89
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
90

91
92
93
94
95
96
97
98
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
99
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
100
101
102
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

103
    args = get_args()
Mohammad's avatar
Mohammad committed
104
    timers = get_timers()
105
106

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
107
108
109
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
110
111
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
112
113

    # Data stuff.
114
115
116
117
118
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
mshoeybi's avatar
mshoeybi committed
119
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
120
121
122

    # Print setup timing.
    print_rank_0('done with setups ...')
123
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
124
    print_rank_0('training ...')
125
126

    iteration = 0
127
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
128
129
130
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
131
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
132

133
134
135
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
136
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
137
                                   iteration, False)
138
139

    if args.save and iteration != 0:
140
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
141
142
143
144
145
146

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
147
                                   0, True)
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
165
166
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
167
168
            iterations += 1
        # Reset
169
        update_num_microbatches(0, consistency_check=False)
170
171
172
173
174
175
176
177
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

178

Mohammad's avatar
Mohammad committed
179
def get_model(model_provider_func):
180
    """Build the model."""
Mohammad's avatar
Mohammad committed
181
    args = get_args()
182
183

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
184
    model = model_provider_func()
185
186
187

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
188
        print(' > number of parameters on (tensor, pipeline) '
189
              'model parallel rank ({}, {}): {}'.format(
190
191
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
192
193
194
195
196
197
198
199
200
201
202
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
203
204
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
205
206
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
207
        model = LocalDDP(model)
208
209
        return model

210
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
211
                              'Exiting.'.format(args.DDP_impl))
212
213


Mohammad's avatar
Mohammad committed
214
def get_optimizer(model):
215
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
216
    args = get_args()
217
218

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
219
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
220
221
222
223
224
225
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
226
227
            if not hasattr(param, 'tensor_model_parallel'):
                param.tensor_model_parallel = False
228
229

    # Use Adam.
230
231
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay,
        betas=(args.adam_beta1, args.adam_beta2), eps=args.adam_eps)
232
233
234
235
236
237
238
239

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
Neel Kant's avatar
Neel Kant committed
240
                                       'min_scale': args.min_scale,
241
242
243
244
245
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
246
def get_learning_rate_scheduler(optimizer):
247
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
248
    args = get_args()
249

250
251
252
253
254
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
255
256
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
257
258
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
259
260
261
262
263
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
264
        update_train_iters(args)
265
266
267
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
268
269
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
270
271
        else:
            warmup_steps = args.lr_warmup_samples
272
    else:
273
274
275
        raise Exception(
            'either train-iters or train-samples should be provided.')

276
277
    lr_scheduler = AnnealingLR(
        optimizer,
278
        max_lr=args.lr,
279
        min_lr=args.min_lr,
280
281
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
282
        decay_style=args.lr_decay_style,
283
284
285
286
287
288
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
289
def setup_model_and_optimizer(model_provider_func):
290
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
291
    args = get_args()
292

Mohammad's avatar
Mohammad committed
293
294
295
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
296
297

    if args.load is not None:
298
299
300
301
302
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
        timers('load checkpoint').start()
303
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
304
305
306
        torch.distributed.barrier()
        timers('load checkpoint').stop()
        timers.log(['load checkpoint'])
307
308
309
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
310
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
311
312
313
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
314
315
316
317
318
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

319
320
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
321
        print("Initializing ICT from pretrained BERT model", flush=True)
322
        unwrapped_model.init_state_dict_from_bert()
323
324
        if args.fp16:
            optimizer._model_params_to_master_params()
Neel Kant's avatar
Neel Kant committed
325

326
327
328
    return model, optimizer, lr_scheduler


329
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
330
    """Communicate tensors between stages."""
331
332
333
334
335
336
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
337
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
338
339
340
    dtype = args.params_dtype
    if args.fp32_residual_connection:
        dtype = torch.float
341
342
343
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
344
                                       device=torch.cuda.current_device(),
345
                                       dtype=dtype)
346
347
348
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
349
                                       device=torch.cuda.current_device(),
350
                                       dtype=dtype)
351
352

    # Send tensors in both the forward and backward directions as appropriate.
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    ops = []
    if tensor_send_prev is not None:
        send_prev_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_prev,
                                               mpu.get_pipeline_model_parallel_prev_rank())
        ops.append(send_prev_op)
    if tensor_recv_prev is not None:
        recv_prev_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_prev,
                                               mpu.get_pipeline_model_parallel_prev_rank())
        ops.append(recv_prev_op)
    if tensor_send_next is not None:
        send_next_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_next,
                                               mpu.get_pipeline_model_parallel_next_rank())
        ops.append(send_next_op)
    if tensor_recv_next is not None:
        recv_next_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_next,
                                               mpu.get_pipeline_model_parallel_next_rank())
        ops.append(recv_next_op)
    reqs = torch.distributed.batch_isend_irecv(ops)
    for req in reqs:
        req.wait()
373
374
375
376
377

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
378
    """Backward step."""
Mohammad's avatar
Mohammad committed
379
380
    args = get_args()
    timers = get_timers()
381

382
383
384
385
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

386
    # Backward pass.
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    if args.fp16:
        optimizer.backward(output_tensor, update_master_grads=False,
                           output_tensor_grad=output_tensor_grad)
    else:
        torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


401
402
403
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
404
405
    args = get_args()

406
    if not mpu.is_pipeline_first_stage():
407
        timers('forward-recv').start()
408
409
410
411
412
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
413
        timers('forward-recv').stop()
414
415
416
417
    else:
        input_tensor = None

    # Forward model for one step.
418
    timers('forward-compute').start()
419
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
420
    timers('forward-compute').stop()
421
422
423

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
424
        output_tensor = loss / get_num_microbatches()
425
426
        losses_reduced.append(loss_reduced)
    else:
427
        timers('forward-send').start()
428
429
430
431
432
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
433
        timers('forward-send').stop()
434
435
436
437
438
439
440
441
442
443
444
445

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
446
        timers('backward-recv').start()
447
448
449
450
451
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
452
        timers('backward-recv').stop()
453
454

    # Backward pass for one step.
455
    timers('backward-compute').start()
456
457
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
458
    timers('backward-compute').stop()
459
460

    if not mpu.is_pipeline_first_stage():
461
        timers('backward-send').start()
462
463
464
465
466
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
467
        timers('backward-send').stop()
468
469


470
471
472
473
474
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
475
476
    args = get_args()

477
478
479
480
481
482
483
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
484
        output_tensor = loss / get_num_microbatches()
485
486
487
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
488
        timers('forward-send-backward-recv').start()
489
490
491
492
493
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
494
        timers('forward-send-backward-recv').stop()
495
496
497
498
499
500
501
502
503
504
505
506
507
508

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
509
        timers('backward-send-forward-recv').start()
510
511
512
513
514
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
515
        timers('backward-send-forward-recv').stop()
516
517
518
519
520
521
    else:
        input_tensor = None

    return input_tensor


522
523
524
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
525
526
    args = get_args()

527
    losses_reduced = []
mohammad's avatar
mohammad committed
528
    for i in range(get_num_microbatches()):
529
530
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
531
        output_tensor = loss / get_num_microbatches()
532
533
534
535
536
537
538
539
540
541
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
542

543
544
545
546
547
548
549

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
550
    num_microbatches = get_num_microbatches()
551
552
553
554
555
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
556
557
558
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
559
560
561
562
563

    input_tensors = []
    output_tensors = []
    losses_reduced = []

564
565
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
566
567
568
569
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
570

571
    # Before running 1F1B, need to receive first forward tensor.
572
573
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
574
    if num_microbatches_remaining > 0:
575
576
577
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
578
            timers('forward-recv').start()
579
580
581
582
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
583
            timers('forward-recv').stop()
584
585

    # Run 1F1B.
586
587
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
588
589
590
591
592
593
594
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

595
596
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
    if args.fp16:
        optimizer.zero_grad(set_grads_to_None=True)
    else:
        optimizer.zero_grad()

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
621
622
623

    # All-reduce if needed.
    if args.DDP_impl == 'local':
624
        timers('backward-params-all-reduce').start()
625
626
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
627
        timers('backward-params-all-reduce').stop()
628

629
630
631
632
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
633
    timers('backward-embedding-all-reduce').start()
634
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
635
            mpu.get_pipeline_model_parallel_world_size() > 1:
636
637
638
639
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
            unwrapped_model = unwrapped_model.module

640
641
642
643
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
644
    timers('backward-embedding-all-reduce').stop()
645

646
647
648
649
650
    # Update master gradients.
    timers('backward-master-grad').start()
    if args.fp16:
        optimizer.update_master_grads()
    timers('backward-master-grad').stop()
651
    grad_norm_local = None
652

653
    # Clipping gradients helps prevent the exploding gradient.
654
    timers('backward-clip-grad').start()
655
    if args.clip_grad > 0.:
656
        if not args.fp16:
657
658
659
660
661
662
663
664
            named_parameters = model.named_parameters()
            parameters = []
            parameter_names = []
            for parameter_name, parameter in model.named_parameters():
                parameters.append(parameter)
                parameter_names.append(parameter_name)
            mpu.clip_grad_norm(parameters, args.clip_grad,
                               parameter_names=parameter_names)
665
        else:
666
            grad_norm_local = optimizer.clip_master_grads(args.clip_grad)
667
    timers('backward-clip-grad').stop()
668

669
    #print_rank_0("print-grad_norm_local {}".format(grad_norm_local))
Mostofa Patwary's avatar
Mostofa Patwary committed
670
671
672
    
    #print_rank_0("after backward")
    #print_grads(model)
673
674
675
    #print_model(model)
    #print_rank_0(params_global_norm(model))
    #print_rank_0(params_grad_norm(model))
Mostofa Patwary's avatar
Mostofa Patwary committed
676

677
678
679
680
681
    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

Mostofa Patwary's avatar
Mostofa Patwary committed
682
683
    #print_rank_0("after optimizer")
    #print_model(model)
684
    #print_rank_0(params_global_norm(model))
Mostofa Patwary's avatar
Mostofa Patwary committed
685
686
    #print_rank_0(params_grad_norm(model))
    #sys.exit()
687
688
    
    #print_rank_0("print-optimizer.overflow {}".format(optimizer.overflow))
Mostofa Patwary's avatar
Mostofa Patwary committed
689

690
691
692
    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
693
694
695
696
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
697
698
699
    else:
        skipped_iter = 1

700
    if mpu.is_pipeline_last_stage():
701
702
703
704
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
705
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
706
707
        return loss_reduced, skipped_iter
    return {}, skipped_iter
708
709


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
710
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
711
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
712
713
714
715
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
716

mohammad's avatar
mohammad committed
717
718
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
719
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
720
721
722
723
724
725
726
727
728
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
729
730
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
731
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
732
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
733
    for key in loss_dict:
mohammad's avatar
mohammad committed
734
        if not skipped_iter:
735
736
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
737
738
739
740
741
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
742
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
743
744
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
745
746
747

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
748

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
749
750
751
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
752
753
754
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
755
    add_to_logging('forward-send-backward-recv')
756
757
758
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
759
    add_to_logging('backward-send-forward-recv')
760
    add_to_logging('backward-master-grad')
761
    add_to_logging('backward-params-all-reduce')
762
    add_to_logging('backward-embedding-all-reduce')
763
    add_to_logging('backward-clip-grad')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
764
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
765
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
766

mohammad's avatar
mohammad committed
767
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
768
769
770
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
771
772
773
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
774
    # Tensorboard values.
mohammad's avatar
mohammad committed
775
776
777
    if writer and is_last_rank():
        writer.add_scalar('learning-rate', learning_rate, iteration)
        writer.add_scalar('learning-rate vs samples', learning_rate,
778
                          args.consumed_train_samples)
mohammad's avatar
mohammad committed
779
780
        writer.add_scalar('batch-size', batch_size, iteration)
        writer.add_scalar('batch-size vs samples', batch_size,
781
                          args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
782
        for key in loss_dict:
mohammad's avatar
mohammad committed
783
784
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
785
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
786
        if args.fp16:
mohammad's avatar
mohammad committed
787
788
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
789
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
790
        timers.write(timers_to_log, writer, iteration,
mohammad's avatar
mohammad committed
791
                     normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
792
793
794

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
mohammad's avatar
mohammad committed
795
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
796
        if writer and torch.distributed.get_rank() == 0:
mohammad's avatar
mohammad committed
797
798
            writer.add_scalar('iteration-time',
                              elapsed_time_per_iteration, iteration)
799
800
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
801
        log_string += ' consumed samples: {:12d} |'.format(
802
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
803
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
804
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
805
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
806
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
807
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
808
809
810
811
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
812
813
814
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
815
816
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
817
818
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
819
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
820
821
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
822
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
823
        total_loss_dict[nan_iters_key] = 0
824
        print_rank_last(log_string)
825
826
827
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
828
829
830
831
832
833
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


834
835
836
837
838
839
840
841
842
843
844
845
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
    timers('save checkpoint').start()
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
    timers('save checkpoint').stop()
    timers.log(['save checkpoint'])


846
def train(forward_step_func, model, optimizer, lr_scheduler,
847
          train_data_iterator, valid_data_iterator):
848
    """Train the model function."""
Mohammad's avatar
Mohammad committed
849
850
    args = get_args()
    timers = get_timers()
851

852
853
854
    # Write args to tensorboard
    write_args_to_tensorboard()

855
856
857
858
859
860
861
862
863
    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

864
865
866
867
    #print_rank_0("Check betas before iterations")
    #for group in optimizer.optimizer.param_groups:
    #    print_rank_0("betas {} lr {} weight_decay {} eps {}".format(group['betas'], group['lr'], group['weight_decay'], group['eps']))

868
    timers('interval time').start()
869
    print_datetime('before the start of training step')
870
871
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
872
        update_num_microbatches(args.consumed_train_samples)
873
874
875
876
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
877
                                             lr_scheduler)
878
        iteration += 1
879
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
880
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
881
                                       get_num_microbatches()
882
883

        # Logging.
Mohammad's avatar
Mohammad committed
884
885
886
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
887
888
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
889
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
890
                                          report_memory_flag, skipped_iter)
891
892

        # Autoresume
893
894
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
895
            check_adlr_autoresume_termination(iteration, model, optimizer,
896
                                              lr_scheduler)
897
898
899
900
901
902

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
903
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
904
                                       iteration, False)
905

906
907
908
909
910
911
912
913
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
930
        if args.exit_interval and iteration % args.exit_interval == 0:
Mostofa Patwary's avatar
Mostofa Patwary committed
931
932
933
            #if not saved_checkpoint:
            #    save_checkpoint_and_time(iteration, model, optimizer,
            #                             lr_scheduler)
934
            torch.distributed.barrier()
935
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
936
            sys.exit()
937

938

mohammad's avatar
mohammad committed
939
    return iteration
940
941


Mohammad's avatar
Mohammad committed
942
def evaluate(forward_step_func, data_iterator, model, verbose=False):
943
    """Evaluation."""
Mohammad's avatar
Mohammad committed
944
    args = get_args()
945
946
947
948
949
950
951
952
953
954
955
956
957

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
958

mohammad's avatar
mohammad committed
959
            for _ in range(get_num_microbatches()):
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
984

985
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
986
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
987
                                           * get_num_microbatches()
988
989
990
991
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
992
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
993
994
995
996
997

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
998
                               iteration, verbose=False):
999
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
1000
1001
1002
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
1015
1016
1017
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
1018
1019


1020
1021
1022
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
1023
    args = get_args()
1024

1025
1026
1027
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
1028
1029
1030

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
1031
1032
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
1033
        args.consumed_train_samples = args.iteration * args.global_batch_size
1034
    if args.iteration > 0 and args.consumed_valid_samples == 0:
1035
1036
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
1037
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
1038
            args.eval_iters * args.global_batch_size
1039

1040
    # Data loader only on rank 0 of each model parallel group.
1041
    if mpu.get_tensor_model_parallel_rank() == 0:
1042
1043

        # Number of train/valid/test samples.
1044
1045
1046
1047
1048
1049
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
1050
        test_iters = args.eval_iters
1051
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
1052
1053
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
1064
1065
1066
1067
1068
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
1082
1083
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
1084
1085
1086
1087
1088
1089
1090
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
1091
1092
1093
    else:
        train_data_iterator = None

1094
1095
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
1096
    else:
1097
        valid_data_iterator = None
1098

1099
1100
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
1101
1102
1103
    else:
        test_data_iterator = None

1104
    return train_data_iterator, valid_data_iterator, test_data_iterator