training.py 41.2 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
28
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Neel Kant's avatar
Neel Kant committed
29
from megatron import get_args
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
41
42
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
47
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
48
from megatron.model.realm_model import ICTBertModel
49
from megatron.utils import check_adlr_autoresume_termination
50
from megatron.data.data_loaders import build_pretraining_data_loader
51
from megatron.utils import report_memory
52
53


54
55
56
57
58
59
60
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


61
def pretrain(train_valid_test_dataset_provider, model_provider,
62
             forward_step_func, extra_args_provider=None, args_defaults={}):
63
64
65
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
66
67
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
68
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
69
        4) train the modle using the forward_step_func.
70
71

    Arguments:
72
73
74
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
75
76
77
78
79
80
81
82
83
84
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
85
86
    """

87
    # Initalize and get arguments, timers, and Tensorboard writer.
88
89
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
90

91
92
93
94
95
96
97
98
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
99
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
100
101
102
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

103
    args = get_args()
Mohammad's avatar
Mohammad committed
104
    timers = get_timers()
105
106

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
107
108
109
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
110
111
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
112
113

    # Data stuff.
114
115
116
117
118
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
mshoeybi's avatar
mshoeybi committed
119
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
120
121
122

    # Print setup timing.
    print_rank_0('done with setups ...')
123
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
124
    print_rank_0('training ...')
125
126

    iteration = 0
127
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
128
129
130
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
131
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
132

133
134
135
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
136
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
137
                                   iteration, False)
138
139

    if args.save and iteration != 0:
140
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
141
142
143
144
145
146

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
147
                                   0, True)
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
165
166
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
167
168
            iterations += 1
        # Reset
169
        update_num_microbatches(0, consistency_check=False)
170
171
172
173
174
175
176
177
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

178

Mohammad's avatar
Mohammad committed
179
def get_model(model_provider_func):
180
    """Build the model."""
Mohammad's avatar
Mohammad committed
181
    args = get_args()
182
183

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
184
    model = model_provider_func()
185
186
187

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
188
        print(' > number of parameters on (tensor, pipeline) '
189
              'model parallel rank ({}, {}): {}'.format(
190
191
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
192
193
194
195
196
197
198
199
200
201
202
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
203
204
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
205
206
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
207
        model = LocalDDP(model)
208
209
        return model

210
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
211
                              'Exiting.'.format(args.DDP_impl))
212
213


Mohammad's avatar
Mohammad committed
214
def get_optimizer(model):
215
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
216
    args = get_args()
217
218

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
219
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
220
221
222
223
224
225
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
226
227
            if not hasattr(param, 'tensor_model_parallel'):
                param.tensor_model_parallel = False
228
229

    # Use Adam.
230
231
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay,
        betas=(args.adam_beta1, args.adam_beta2), eps=args.adam_eps)
232
233
234
235
236
237
238
239

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
Neel Kant's avatar
Neel Kant committed
240
                                       'min_scale': args.min_scale,
241
242
243
244
245
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
246
def get_learning_rate_scheduler(optimizer):
247
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
248
    args = get_args()
249

250
251
252
253
254
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
255
256
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
257
258
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
259
260
261
262
263
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
264
        update_train_iters(args)
265
266
267
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
268
269
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
270
271
        else:
            warmup_steps = args.lr_warmup_samples
272
    else:
273
274
275
        raise Exception(
            'either train-iters or train-samples should be provided.')

276
277
    lr_scheduler = AnnealingLR(
        optimizer,
278
        max_lr=args.lr,
279
        min_lr=args.min_lr,
280
281
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
282
        decay_style=args.lr_decay_style,
283
284
285
286
287
288
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
289
def setup_model_and_optimizer(model_provider_func):
290
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
291
    args = get_args()
292

Mohammad's avatar
Mohammad committed
293
294
295
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
296
297

    if args.load is not None:
298
299
300
301
302
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
        timers('load checkpoint').start()
303
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
304
305
306
        torch.distributed.barrier()
        timers('load checkpoint').stop()
        timers.log(['load checkpoint'])
307
308
309
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
310
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
311
312
313
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
314
315
316
317
318
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

319
320
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
321
        print("Initializing ICT from pretrained BERT model", flush=True)
322
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
323

324
325
326
    return model, optimizer, lr_scheduler


327
328
329
330
331
332
333
334
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
    """Communicate tensors between stages using torch.distributed.ring_exchange(.) API."""
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
335
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
336
337
338
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
339
340
                                       device=torch.cuda.current_device(),
                                       dtype=args.params_dtype)
341
342
343
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
344
345
                                       device=torch.cuda.current_device(),
                                       dtype=args.params_dtype)
346
347
348
349
350
351

    # Send tensors in both the forward and backward directions as appropriate.
    torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev,
                                    tensor_recv_prev=tensor_recv_prev,
                                    tensor_send_next=tensor_send_next,
                                    tensor_recv_next=tensor_recv_next,
352
                                    group=mpu.get_pipeline_model_parallel_group())
353
354
355
356
357

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
358
    """Backward step."""
Mohammad's avatar
Mohammad committed
359
360
    args = get_args()
    timers = get_timers()
361

362
363
364
365
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

366
    # Backward pass.
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    if args.fp16:
        optimizer.backward(output_tensor, update_master_grads=False,
                           output_tensor_grad=output_tensor_grad)
    else:
        torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


381
382
383
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
384
385
    args = get_args()

386
    if not mpu.is_pipeline_first_stage():
387
        timers('forward-recv').start()
388
389
390
391
392
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
393
        timers('forward-recv').stop()
394
395
396
397
    else:
        input_tensor = None

    # Forward model for one step.
398
    timers('forward-compute').start()
399
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
400
    timers('forward-compute').stop()
401
402
403

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
404
        output_tensor = loss / get_num_microbatches()
405
406
        losses_reduced.append(loss_reduced)
    else:
407
        timers('forward-send').start()
408
409
410
411
412
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
413
        timers('forward-send').stop()
414
415
416
417
418
419
420
421
422
423
424
425

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
426
        timers('backward-recv').start()
427
428
429
430
431
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
432
        timers('backward-recv').stop()
433
434

    # Backward pass for one step.
435
    timers('backward-compute').start()
436
437
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
438
    timers('backward-compute').stop()
439
440

    if not mpu.is_pipeline_first_stage():
441
        timers('backward-send').start()
442
443
444
445
446
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
447
        timers('backward-send').stop()
448
449


450
451
452
453
454
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
455
456
    args = get_args()

457
458
459
460
461
462
463
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
464
        output_tensor = loss / get_num_microbatches()
465
466
467
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
468
        timers('forward-send-backward-recv').start()
469
470
471
472
473
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
474
        timers('forward-send-backward-recv').stop()
475
476
477
478
479
480
481
482
483
484
485
486
487
488

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
489
        timers('backward-send-forward-recv').start()
490
491
492
493
494
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
495
        timers('backward-send-forward-recv').stop()
496
497
498
499
500
501
    else:
        input_tensor = None

    return input_tensor


502
503
504
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
505
506
    args = get_args()

507
    losses_reduced = []
mohammad's avatar
mohammad committed
508
    for i in range(get_num_microbatches()):
509
510
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
511
        output_tensor = loss / get_num_microbatches()
512
513
514
515
516
517
518
519
520
521
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
522

523
524
525
526
527
528
529

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
530
    num_microbatches = get_num_microbatches()
531
532
533
534
535
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
536
537
538
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
539
540
541
542
543

    input_tensors = []
    output_tensors = []
    losses_reduced = []

544
545
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
546
547
548
549
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
550

551
    # Before running 1F1B, need to receive first forward tensor.
552
553
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
554
    if num_microbatches_remaining > 0:
555
556
557
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
558
            timers('forward-recv').start()
559
560
561
562
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
563
            timers('forward-recv').stop()
564
565

    # Run 1F1B.
566
567
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
568
569
570
571
572
573
574
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

575
576
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
    if args.fp16:
        optimizer.zero_grad(set_grads_to_None=True)
    else:
        optimizer.zero_grad()

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
601
602
603

    # All-reduce if needed.
    if args.DDP_impl == 'local':
604
        timers('backward-params-all-reduce').start()
605
606
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
607
        timers('backward-params-all-reduce').stop()
608

609
610
611
612
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
613
    timers('backward-embedding-all-reduce').start()
614
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
615
            mpu.get_pipeline_model_parallel_world_size() > 1:
616
617
618
619
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
            unwrapped_model = unwrapped_model.module

620
621
622
623
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
624
    timers('backward-embedding-all-reduce').stop()
625

626
627
628
629
630
631
    # Update master gradients.
    timers('backward-master-grad').start()
    if args.fp16:
        optimizer.update_master_grads()
    timers('backward-master-grad').stop()

632
    # Clipping gradients helps prevent the exploding gradient.
633
    timers('backward-clip-grad').start()
634
    if args.clip_grad > 0.:
635
        if not args.fp16:
636
637
638
639
640
641
642
643
            named_parameters = model.named_parameters()
            parameters = []
            parameter_names = []
            for parameter_name, parameter in model.named_parameters():
                parameters.append(parameter)
                parameter_names.append(parameter_name)
            mpu.clip_grad_norm(parameters, args.clip_grad,
                               parameter_names=parameter_names)
644
645
        else:
            optimizer.clip_master_grads(args.clip_grad)
646
    timers('backward-clip-grad').stop()
647
648
649
650
651
652
653
654
655

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
656
657
658
659
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
660
661
662
    else:
        skipped_iter = 1

663
    if mpu.is_pipeline_last_stage():
664
665
666
667
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
668
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
669
670
        return loss_reduced, skipped_iter
    return {}, skipped_iter
671
672


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
673
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
674
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
675
676
677
678
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
679

mohammad's avatar
mohammad committed
680
681
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
682
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
683
684
685
686
687
688
689
690
691
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
692
693
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
694
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
695
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
696
    for key in loss_dict:
mohammad's avatar
mohammad committed
697
        if not skipped_iter:
698
699
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
700
701
702
703
704
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
705
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
706
707
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
708
709
710

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
711

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
712
713
714
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
715
716
717
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
718
    add_to_logging('forward-send-backward-recv')
719
720
721
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
722
    add_to_logging('backward-send-forward-recv')
723
    add_to_logging('backward-master-grad')
724
    add_to_logging('backward-params-all-reduce')
725
    add_to_logging('backward-embedding-all-reduce')
726
    add_to_logging('backward-clip-grad')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
727
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
728
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
729

mohammad's avatar
mohammad committed
730
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
731
732
733
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
734
735
736
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
737
    # Tensorboard values.
mohammad's avatar
mohammad committed
738
739
740
    if writer and is_last_rank():
        writer.add_scalar('learning-rate', learning_rate, iteration)
        writer.add_scalar('learning-rate vs samples', learning_rate,
741
                          args.consumed_train_samples)
mohammad's avatar
mohammad committed
742
743
        writer.add_scalar('batch-size', batch_size, iteration)
        writer.add_scalar('batch-size vs samples', batch_size,
744
                          args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
745
        for key in loss_dict:
mohammad's avatar
mohammad committed
746
747
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
748
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
749
        if args.fp16:
mohammad's avatar
mohammad committed
750
751
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
752
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
753
        timers.write(timers_to_log, writer, iteration,
mohammad's avatar
mohammad committed
754
                     normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
755
756
757

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
mohammad's avatar
mohammad committed
758
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
759
        if writer and torch.distributed.get_rank() == 0:
mohammad's avatar
mohammad committed
760
761
            writer.add_scalar('iteration-time',
                              elapsed_time_per_iteration, iteration)
762
763
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
764
        log_string += ' consumed samples: {:12d} |'.format(
765
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
766
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
767
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
768
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
769
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
770
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
771
772
773
774
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
775
776
777
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
778
779
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
780
781
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
782
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
783
784
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
785
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
786
        total_loss_dict[nan_iters_key] = 0
787
        print_rank_last(log_string)
788
789
790
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
791
792
793
794
795
796
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


797
798
799
800
801
802
803
804
805
806
807
808
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
    timers('save checkpoint').start()
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
    timers('save checkpoint').stop()
    timers.log(['save checkpoint'])


809
def train(forward_step_func, model, optimizer, lr_scheduler,
810
          train_data_iterator, valid_data_iterator):
811
    """Train the model function."""
Mohammad's avatar
Mohammad committed
812
813
    args = get_args()
    timers = get_timers()
814

815
816
817
    # Write args to tensorboard
    write_args_to_tensorboard()

818
819
820
821
822
823
824
825
826
827
    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
828
    print_datetime('before the start of training step')
829
830
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
831
        update_num_microbatches(args.consumed_train_samples)
832
833
834
835
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
836
                                             lr_scheduler)
837
        iteration += 1
838
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
839
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
840
                                       get_num_microbatches()
841
842

        # Logging.
Mohammad's avatar
Mohammad committed
843
844
845
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
846
847
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
848
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
849
                                          report_memory_flag, skipped_iter)
850
851

        # Autoresume
852
853
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
854
            check_adlr_autoresume_termination(iteration, model, optimizer,
855
                                              lr_scheduler)
856
857

        # Checkpointing
858
        saved_checkpoint = False
859
860
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
861
862
863
864
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

865
866
867
868
869
870

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
871
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
872
                                       iteration, False)
873

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
890
        if args.exit_interval and iteration % args.exit_interval == 0:
891
892
893
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
894
            torch.distributed.barrier()
895
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
896
            sys.exit()
897

898

mohammad's avatar
mohammad committed
899
    return iteration
900
901


Mohammad's avatar
Mohammad committed
902
def evaluate(forward_step_func, data_iterator, model, verbose=False):
903
    """Evaluation."""
Mohammad's avatar
Mohammad committed
904
    args = get_args()
905
906
907
908
909
910
911
912
913
914
915
916
917

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
918

mohammad's avatar
mohammad committed
919
            for _ in range(get_num_microbatches()):
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
944

945
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
946
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
947
                                           * get_num_microbatches()
948
949
950
951
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
952
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
953
954
955
956
957

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
958
                               iteration, verbose=False):
959
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
960
961
962
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
963
964
965
966
967
968
969
970
971
972
973
974
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
975
976
977
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
978
979


980
981
982
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
983
    args = get_args()
984

985
986
987
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
988
989
990

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
991
992
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
993
        args.consumed_train_samples = args.iteration * args.global_batch_size
994
    if args.iteration > 0 and args.consumed_valid_samples == 0:
995
996
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
997
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
998
            args.eval_iters * args.global_batch_size
999

1000
    # Data loader only on rank 0 of each model parallel group.
1001
    if mpu.get_tensor_model_parallel_rank() == 0:
1002
1003

        # Number of train/valid/test samples.
1004
1005
1006
1007
1008
1009
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
1010
        test_iters = args.eval_iters
1011
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
1012
1013
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
1024
1025
1026
1027
1028
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
1042
1043
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
1044
1045
1046
1047
1048
1049
1050
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
1051
1052
1053
    else:
        train_data_iterator = None

1054
1055
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
1056
    else:
1057
        valid_data_iterator = None
1058

1059
1060
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
1061
1062
1063
    else:
        test_data_iterator = None

1064
    return train_data_iterator, valid_data_iterator, test_data_iterator