training.py 38.4 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
47
48
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
55


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
68
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
69
             args_defaults={}):
70
71
72
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
73
74
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
75
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
76
        4) train the modle using the forward_step_func.
77
78

    Arguments:
79
80
81
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
82
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
83
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
84
85
86
87
88
89
90
91
92
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
93
94
    """

95
    # Initalize and get arguments, timers, and Tensorboard writer.
96
97
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
98

99
100
101
102
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
103
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
104
105
106
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
107
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
108
109
110
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

111
    args = get_args()
Mohammad's avatar
Mohammad committed
112
    timers = get_timers()
113
114

    # Model, optimizer, and learning rate.
115
    timers('model-and-optimizer-setup').start()
116
117
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider,
                                                               model_type)
118
    timers('model-and-optimizer-setup').stop()
119
120
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
121
122

    # Data stuff.
123
124
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
125
        all_data_iterators = [
126
127
128
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
129
130
131
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
132
133
134
135
136
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
137
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
138
139

    # Print setup timing.
140
141
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
142
    print_rank_0('training ...')
143
144

    iteration = 0
145
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
146
147
148
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
149
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
150

151
152
153
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
154
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
155
                                   iteration, False)
156
157

    if args.save and iteration != 0:
158
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
159
160
161
162
163
164

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
165
                                   0, True)
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
183
184
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
185
186
            iterations += 1
        # Reset
187
        update_num_microbatches(0, consistency_check=False)
188
189
190
191
192
193
194
195
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

196

197
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
198
    """Build the model."""
Mohammad's avatar
Mohammad committed
199
    args = get_args()
200
    args.model_type = model_type
201

202
    # Build model.
203
204
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
205
206
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
207
208
209
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
210
211
212
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
213
            this_model = model_provider_func(
214
215
216
                pre_process=pre_process,
                post_process=post_process
            )
217
            this_model.model_type = model_type
218
            model.append(this_model)
219
    else:
220
221
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
247

248
249
    if not isinstance(model, list):
        model = [model]
250

251
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
252
253
254
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
255
256
257
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
258

259
260
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
261
        print(' > number of parameters on (tensor, pipeline) '
262
              'model parallel rank ({}, {}): {}'.format(
263
264
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
265
266
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
267
268

    # GPU allocation.
269
270
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
271
272

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
273
274
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
275

276
277
278
279
280
281
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
282

283
284
285
286
287
288
289
290
291
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]

        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
292

293
    return model
294
295


Mohammad's avatar
Mohammad committed
296
def get_learning_rate_scheduler(optimizer):
297
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
298
    args = get_args()
299

300
301
302
303
304
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
305
306
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
307
308
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
309
310
311
312
313
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
314
        update_train_iters(args)
315
316
317
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
318
319
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
320
321
        else:
            warmup_steps = args.lr_warmup_samples
322
    else:
323
324
325
        raise Exception(
            'either train-iters or train-samples should be provided.')

326
327
    lr_scheduler = AnnealingLR(
        optimizer,
328
        max_lr=args.lr,
329
        min_lr=args.min_lr,
330
331
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
332
        decay_style=args.lr_decay_style,
333
334
335
336
337
338
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


339
def setup_model_and_optimizer(model_provider_func, model_type):
340
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
341
    args = get_args()
342

343
    model = get_model(model_provider_func, model_type)
344

345
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
346
                                   (torchDDP, LocalDDP, Float16Module))
347
348
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
349
    lr_scheduler = get_learning_rate_scheduler(optimizer)
350
351

    if args.load is not None:
352
353
354
355
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
356
        timers('load-checkpoint').start()
357
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
358
        torch.distributed.barrier()
359
360
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
361
362
363
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
364
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
365
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
366
367
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
368
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
369
370
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
371
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
372
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
373
374
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
375

376
377
378
    return model, optimizer, lr_scheduler


379
380
381
382
383
384
385
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
386
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
387
388
        for partition in model:
            partition.zero_grad_buffer()
389
    optimizer.zero_grad()
390

391
    forward_backward_func = get_forward_backward_func()
392
393
394
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
395

396
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
397
    if args.empty_unused_memory_level >= 1:
398
399
        torch.cuda.empty_cache()

400
401
    # All-reduce if needed.
    if args.DDP_impl == 'local':
402
        timers('backward-params-all-reduce').start()
403
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
404
            model_module.allreduce_gradients()
405
        timers('backward-params-all-reduce').stop()
406

407
408
409
410
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
411
    timers('backward-embedding-all-reduce').start()
412
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
413
            mpu.get_pipeline_model_parallel_world_size() > 1:
414
415
416
417
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
418
419
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
420
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
421
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
422

423
424
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
425
426
427
428
429
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
430

Vijay Korthikanti's avatar
Vijay Korthikanti committed
431
432
433
    # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
    # stages to ensure that position embeddings parameters stay in sync.
    # This should only run for T5 models with pipeline parallelism
Vijay Korthikanti's avatar
Vijay Korthikanti committed
434
435
436
437
438
439
    if mpu.is_rank_in_position_embedding_group() and \
            mpu.get_pipeline_model_parallel_world_size() > 1 and \
            args.pipeline_model_parallel_split_rank is not None:
        unwrapped_model = model[0]
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
440
441
        assert args.DDP_impl == 'local', \
            'T5 model is only supported with local DDP mode'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
442
443
        grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
        torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
444
    timers('backward-embedding-all-reduce').stop()
445

446
447
    # Update parameters.
    timers('optimizer').start()
448
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
449
450
451
    timers('optimizer').stop()

    # Update learning rate.
452
    if update_successful:
453
454
455
456
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
457
        skipped_iter = 0
458
459
460
    else:
        skipped_iter = 1

461
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
462
    if args.empty_unused_memory_level >= 2:
463
464
        torch.cuda.empty_cache()

465
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
466
467
468
469
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
470
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
471
472
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
473
474


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
475
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
476
                 loss_scale, report_memory_flag, skipped_iter,
477
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
478
479
480
481
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
482

mohammad's avatar
mohammad committed
483
484
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
485
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
486
487
488
489
490
491
492
493
494
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
495
496
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
497
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
498
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
499
    for key in loss_dict:
mohammad's avatar
mohammad committed
500
        if not skipped_iter:
501
502
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
503
504
505
506
507
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
508
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
509
510
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
511
512
513

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
514

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
515
516
517
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
518
519
520
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
521
    add_to_logging('forward-backward-send-forward-backward-recv')
522
523
524
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
525
    add_to_logging('backward-send-forward-recv')
526
    add_to_logging('backward-send-backward-recv')
527
    add_to_logging('backward-params-all-reduce')
528
    add_to_logging('backward-embedding-all-reduce')
529
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
530
    add_to_logging('optimizer-unscale-and-check-inf')
531
532
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
533
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
534
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
535

mohammad's avatar
mohammad committed
536
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
537
538
539
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
540
541
542
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
543
    # Tensorboard values.
544
545
546
547
548
549
550
551
552
553
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
554
        for key in loss_dict:
mohammad's avatar
mohammad committed
555
556
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
557
                              args.consumed_train_samples)
558
559
560
561
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
562
563
564
565
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
566
567
568
569
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
570
571
572
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
573
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
574
575
576
577
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
578
579
580
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
598
599

    if iteration % args.log_interval == 0:
600
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
601
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
602
        if writer:
603
604
605
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
606
607
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
608
        log_string += ' consumed samples: {:12d} |'.format(
609
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
610
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
611
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
612
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
613
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
614
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
615
616
617
618
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
619
620
621
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
622
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
623
624
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
625
626
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
627
628
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
629
630
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
631
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
632
633
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
634
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
635
        total_loss_dict[nan_iters_key] = 0
636
        print_rank_last(log_string)
637
638
639
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
640
641
642
643
644
645
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


646
647
648
649
650
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
651
    timers('save-checkpoint').start()
652
653
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
654
655
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
656
657


658
def train(forward_step_func, model, optimizer, lr_scheduler,
659
          train_data_iterator, valid_data_iterator):
660
    """Train the model function."""
Mohammad's avatar
Mohammad committed
661
662
    args = get_args()
    timers = get_timers()
663

664
665
666
    # Write args to tensorboard
    write_args_to_tensorboard()

667
    # Turn on training mode which enables dropout.
668
669
    for model_module in model:
        model_module.train()
670
671
672
673
674
675
676

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

677
    timers('interval-time').start()
678
    print_datetime('before the start of training step')
679
680
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
681
        update_num_microbatches(args.consumed_train_samples)
682
683
684
685
686
687
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
688
        iteration += 1
689
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
690
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
691
                                       get_num_microbatches()
692
693

        # Logging.
694
        loss_scale = optimizer.get_loss_scale().item()
695
696
697
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
698
699
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
700
                                          iteration, loss_scale,
701
                                          report_memory_flag, skipped_iter,
702
                                          grad_norm, params_norm, num_zeros_in_grad)
703
704

        # Autoresume
705
706
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
707
            check_adlr_autoresume_termination(iteration, model, optimizer,
708
                                              lr_scheduler)
709
710
711
712
713
714

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
715
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
716
                                       iteration, False)
717

718
719
        # Checkpointing
        saved_checkpoint = False
720
721
722
723
724
725
726
727
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

728
729
730
731
732
733
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

734
735
736
737
738
739
740
741
742
743
744
745
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
746
                print_datetime('exiting program after {} minutes'.format(train_time))
747
748
                sys.exit()

749
        # Exiting based on iterations
750
        if args.exit_interval and iteration % args.exit_interval == 0:
751
752
753
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
754
            torch.distributed.barrier()
755
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
756
            sys.exit()
757

758

mohammad's avatar
mohammad committed
759
    return iteration
760
761


Mohammad's avatar
Mohammad committed
762
def evaluate(forward_step_func, data_iterator, model, verbose=False):
763
    """Evaluation."""
Mohammad's avatar
Mohammad committed
764
    args = get_args()
765
766

    # Turn on evaluation mode which disables dropout.
767
768
    for model_module in model:
        model_module.eval()
769
770
771
772
773
774
775
776
777
778

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
779

780
            forward_backward_func = get_forward_backward_func()
781
782
783
784
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

785
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
786
            if args.empty_unused_memory_level >= 1:
787
788
                torch.cuda.empty_cache()

789
790
791
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
792
                    for key in loss_dict:
793
794
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
795

796
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
797
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
798
                                           * get_num_microbatches()
799
    # Move model back to the train mode.
800
801
    for model_module in model:
        model_module.train()
802
803

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
804
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
805
806
807
808
809

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
810
                               iteration, verbose=False):
811
    """Helper function to evaluate and dump results on screen."""
812
    args = get_args()
Mohammad's avatar
Mohammad committed
813
814
815
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
816
817
818
819
820
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
821
        if writer:
mohammad's avatar
mohammad committed
822
            writer.add_scalar('{} validation'.format(key),
823
824
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
825
            writer.add_scalar('{} validation vs samples'.format(key),
826
827
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
828
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
829
                writer.add_scalar('{} validation ppl'.format(key), ppl,
830
                                  iteration)
mohammad's avatar
mohammad committed
831
                writer.add_scalar('{} validation ppl vs samples'.format(key),
832
                                  ppl, args.consumed_train_samples)
833
834

    length = len(string) + 1
835
836
837
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
838
839


Vijay Korthikanti's avatar
Vijay Korthikanti committed
840
def cyclic_iter(iter):
841
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
842
        for x in iter:
843
844
            yield x

845
846
847
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
848
    args = get_args()
849

850
851
852
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
853
854
855

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
856
857
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
858
        args.consumed_train_samples = args.iteration * args.global_batch_size
859
    if args.iteration > 0 and args.consumed_valid_samples == 0:
860
861
862
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
863

864
    # Data loader only on rank 0 of each model parallel group.
865
    if mpu.get_tensor_model_parallel_rank() == 0:
866
867

        # Number of train/valid/test samples.
868
869
870
871
872
873
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
874
        test_iters = args.eval_iters
875
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
876
877
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
878
879
880
881
882
883
884
885
886
887
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
888
889
890
891
892
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
893
894
895
896
897
898
899
900
901
902
903
904
905

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
906
907
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
908
909
910
911
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
912

913
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
914
915
916
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

917
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
918
919
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
920
921
922
    else:
        train_data_iterator = None

923
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
924
925
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
926
    else:
927
        valid_data_iterator = None
928

929
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
930
931
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
932
933
934
    else:
        test_data_iterator = None

935
    return train_data_iterator, valid_data_iterator, test_data_iterator