optimizer.py 28.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21

from abc import ABC
from abc import abstractmethod
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
22
23
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
mohammad's avatar
mohammad committed
24

mohammad's avatar
mohammad committed
25
26
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
27
from megatron import print_rank_0
28
29
30
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
from megatron.utils import unwrap_model
mohammad's avatar
mohammad committed
31

Rewon Child's avatar
Rewon Child committed
32
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
33

34
35
# >>>
from lutil import pax, tp
36

Lawrence McAfee's avatar
Lawrence McAfee committed
37
DEBUG_ITERATION = 1 # 10
38
# <<<
mohammad's avatar
mohammad committed
39

Lawrence McAfee's avatar
Lawrence McAfee committed
40

mohammad's avatar
mohammad committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


56
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
57
58
59
60
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
61
62
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
63
64
65
66
67
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
68
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
69
70
71
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

72

mohammad's avatar
mohammad committed
73
74
75

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
76
77
78

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
79
                 params_have_main_grad,
80
81
                 use_contiguous_buffers_in_local_ddp,
                 models):
82

mohammad's avatar
mohammad committed
83
84
85
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
86
87
88
89
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
90
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
91

92
93
94
95
        # 'models' are retained for access to the contiguous grad buffers.
        # (see distributed optimizer)
        self.models = models

96
        if self.use_contiguous_buffers_in_local_ddp:
97
98
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
99

Rewon Child's avatar
Rewon Child committed
100
    def get_parameters(self):
101
102
103
104
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
105
106
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
107

108
109
110
111
112
    def get_model_parallel_group(self):
        '''Default returned here, but the distributed optimizer overrides this.'''
        return mpu.get_model_parallel_group()


Lawrence McAfee's avatar
Lawrence McAfee committed
113
114
    def clip_grad_norm(self, clip_grad, ITERATION):
        params = self.get_parameters()
115
116
117
118
        return clip_grad_norm_fp32(
            params, clip_grad,
            model_parallel_group=self.get_model_parallel_group(),
            ITERATION = ITERATION)
119

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
120

Rewon Child's avatar
Rewon Child committed
121
122
    def count_zeros(self):
        params = self.get_parameters()
123
124
        return count_zeros_fp32(params,
                                model_parallel_group=self.get_model_parallel_group())
Rewon Child's avatar
Rewon Child committed
125

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
126

mohammad's avatar
mohammad committed
127
128
129
130
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
131

mohammad's avatar
mohammad committed
132
133
    @abstractmethod
    def get_loss_scale(self):
134
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
135
136
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
137

mohammad's avatar
mohammad committed
138
139
140
141
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
142

143
144
    @abstractmethod
    def reload_model_params(self):
145
146
147
148
149
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
150
151
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
152

mohammad's avatar
mohammad committed
153
154
155
156
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
157

mohammad's avatar
mohammad committed
158
159
160
161
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
162

mohammad's avatar
mohammad committed
163
164
165
166
167
168
169
170
171
172
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
173

mohammad's avatar
mohammad committed
174
175
176
177
178
179
180
181
182
183
184
185
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


186
    @abstractmethod
187
    def step(self, args, timers):
188
189
        pass

190
191
192
    def gather_model_params(self, args, timers, ITERATION):
        '''For the case of a non-distributed-optimizer, there is nothing to
        do here.'''
193
194
        pass

195
    def allreduce_word_embedding_grads(self, args):
196
197
        '''
        All-reduce word embedding grads.
198

199
200
201
202
        Reduce grads across first and last stages to ensure that word_embeddings
        parameters stay in sync. This should only run for models that support
        pipelined model parallelism (BERT and GPT-2).
        '''
203
204
205
206

        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
207
                unwrapped_model = self.models[0]
208
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
209
                unwrapped_model = self.models[-1]
210
            else:  # We do not support the interleaved schedule for T5 yet.
211
                unwrapped_model = self.models[0]
212
213
214
215
216
217
218
219
220
221
222
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())

223
    def allreduce_position_embedding_grads(self, args):
224
225
226
227
228
229
        '''
        All-reduce position_embeddings grad across first (encoder) and
        split (decoder) stages to ensure that position embeddings parameters
        stay in sync. This should only run for T5 models with pipeline
        parallelism.
        '''
230
231
232
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
233
            unwrapped_model = self.models[0]
234
235
236
237
238
239
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
240

241
    def allreduce_embedding_grads(self, args):
Lawrence McAfee's avatar
Lawrence McAfee committed
242
243
244
        # >>>
        # return # ** .. TEMPORARY .. **
        # <<<
245
246
        self.allreduce_word_embedding_grads(args)
        self.allreduce_position_embedding_grads(args)
247

248
    def reduce_model_grads(self, args, timers):
249
250
251
252

        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
253
254
            for model in self.models:
                model.allreduce_gradients()
255
256
257
258
            timers('backward-params-all-reduce').stop()

        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
259
        self.allreduce_embedding_grads(args)
260
261
        timers('backward-embedding-all-reduce').stop()

262

263
264
# class BaseFloat16Optimizer(MegatronOptimizer):
class MixedPrecisionOptimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
265
266

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
267
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
268
269
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
270

Lawrence McAfee's avatar
Lawrence McAfee committed
271
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
272
            optimizer, clip_grad, log_num_zeros_in_grad,
273
274
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
275
276

        self.bf16 = bf16
mohammad's avatar
mohammad committed
277
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
278
279
280
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
281
282
283

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
284
285
286
287
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
288
289

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
290
291
292
293
294
295
296
297
298
299
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
300

Lawrence McAfee's avatar
Lawrence McAfee committed
301
302
303
304
305
306
307

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
308
309
310
311
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


312
    def _unscale_main_grads_and_check_for_nan(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
327
328
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=self.get_model_parallel_group())
Lawrence McAfee's avatar
Lawrence McAfee committed
329
330
331
332
333
334

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
335
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Lawrence McAfee's avatar
Lawrence McAfee committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    @classmethod
    def debug_base(cls, ITERATION, key, value):
        from megatron import get_args
        args = get_args()
        my_rank = torch.distributed.get_rank()
        if ITERATION != DEBUG_ITERATION:
            return
        for r in range(torch.distributed.get_world_size()):
            if my_rank == r:
                # prefix = "            + "
                prefix = ""
                print("%sbr/%s; [r%d, i%d]; %s, %.12e" % (prefix, "fix " if args.use_distributed_optimizer else "main", my_rank, ITERATION, key, value))
            torch.distributed.barrier()
        torch.distributed.barrier()
        # if my_rank == 0:
        #     raise Exception("debug.")
        # else:
        #     exit(0)
        exit(0)
    def debug_model(self, ITERATION, key, use_grad):
        use_grad = bool(use_grad)
        tensors = [
            (p.main_grad.float() if use_grad else p.float())
            for m in self.models for p in m.parameters()
        ]
        count = sum(t.nelement() for t in tensors)
        return self.debug_base(
            ITERATION,
            "model/%s, %s [count %d]" % (
                "grad" if use_grad else "param",
                key,
                count,
            ),
            # sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
            sum(torch.sum(torch.abs(t)) for t in tensors),
        )
    def debug_main(self, ITERATION, key, use_grad):
        use_grad = bool(use_grad)
        tensors = [
            p.grad if use_grad else p
            for g in self.optimizer.param_groups
            for p in g["params"]
        ]
        tensors = [ t.float() for t in tensors ]
        count = sum(t.nelement() for t in tensors)
        return self.debug_base(
            ITERATION,
            "main/%s, %s [count %d]" % (
                "grad" if use_grad else "param",
                key,
                count,
            ),
            sum(torch.sum(torch.abs(t)) for t in tensors),
        )
Lawrence McAfee's avatar
Lawrence McAfee committed
390
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
391
392

    @torch.no_grad()
393
    def step(self, args, timers, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
394

395
        # >>>
396
397
        # self.debug_model(ITERATION, "before copy grad.", 0)
        # self.debug_main(ITERATION, "before copy grad.", 0)
398
399
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
400
401
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
402
        self._copy_model_grads_to_main_grads(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        timers('optimizer-copy-to-main-grad').stop()

        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
Lawrence McAfee's avatar
Lawrence McAfee committed
426
            grad_norm = self.clip_grad_norm(self.clip_grad, ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
427
428
429
430
431
432
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

433
434
435
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
436
437
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
438
        self._copy_main_params_to_model_params(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
439
440
        timers('optimizer-copy-main-to-model-params').stop()

Lawrence McAfee's avatar
Lawrence McAfee committed
441
442
443
444
445
        # >>>
        # self.debug_model(ITERATION, "after copy param.", 0)
        # self.debug_main(ITERATION, "after copy param.", 0)
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
446
447
448
449
        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
450
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
451
452
# class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
Lawrence McAfee's avatar
Lawrence McAfee committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
479
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
480
481
482
483

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
484
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
485

mohammad's avatar
mohammad committed
486
        # ======================
487
        # main parameter stuff
mohammad's avatar
mohammad committed
488
489
490
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
491
492
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
493
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
494
495
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
496
497
498
499
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
500
            float16_params_this_group = []
mohammad's avatar
mohammad committed
501
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
502
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
503
504
505
506
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
507
508
509
510
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
511
                        # Create a copy
512
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
513
                        # Copy tensor model parallel attributes.
514
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
515
                                                                  param)
516
                        if hasattr(param, 'shared'):
517
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
518
                        # Replace the optimizer params with the new fp32 copy.
519
                        param_group['params'][i] = main_param
520

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
521
                        fp32_from_float16_params_this_group.append(main_param)
522
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
523
                        if param in self.optimizer.state:
524
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
525
526
527
528
529
530
531
532
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
533
534
535
536
537
538
539
540
541
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
542
543
544
545
546
547
548
549
550
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
551
552
553
554
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
555
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
556
            _zero_grad_group_helper(group, set_to_none)
557
558
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
559
560
561
562
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


563
    def _collect_main_grad_data_for_unscaling(self):
564

565
        main_grads = []
566

567
568
569
570
571
        # fp32 params from float16 ones.
        for main_group in self.fp32_from_float16_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
572

573
574
575
576
577
578
579
        # Append fp32 parameters.
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
        
        return main_grads
580
581


582
583
584
585
586
587
588
589
590
    def _get_model_and_main_params_data_float16(self):
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data
591

Lawrence McAfee's avatar
Lawrence McAfee committed
592

593
    def _copy_model_grads_to_main_grads(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
594
595
596
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
597
            for model_param, main_param in zip(model_group, main_group):
598
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
599
600
601
602
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
603
604
605
606
607

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
608
                if self.params_have_main_grad and \
609
                   not self.use_contiguous_buffers_in_local_ddp:
610
611
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
612
613
614
615
616
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
617

618
619
620
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
621
                    if not self.use_contiguous_buffers_in_local_ddp:
622
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
623

624

625
    def _copy_main_params_to_model_params(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
626
627
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
628
629
630
631
632
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
633
634
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
635
636
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
637
638


mohammad's avatar
mohammad committed
639
640
641
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
642
643
644
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
645
646
647
648
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
649
650
651
652
653
654
655
656
657
658
659
660
661
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
662
663
664
665
666
667
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
668

669
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
670
671
672
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
673
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
674
675
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
676
677
678
679
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


mohammad's avatar
mohammad committed
680
681
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
682
683
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
684
                 params_have_main_grad,
685
686
                 use_contiguous_buffers_in_local_ddp,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
687
688
689

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
690
691
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
mohammad's avatar
mohammad committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
708
    def step(self, args, timers, ITERATION):
mohammad's avatar
mohammad committed
709
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
710
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
711

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
712
713
714
715
716
717
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

718
719
720
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
721
                    if not self.use_contiguous_buffers_in_local_ddp:
722
723
                        param.main_grad = None

mohammad's avatar
mohammad committed
724
        # Clip gradients.
725
        grad_norm = None
mohammad's avatar
mohammad committed
726
        if self.clip_grad > 0.0:
727
            grad_norm = self.clip_grad_norm(self.clip_grad, ITERATION)
mohammad's avatar
mohammad committed
728

Rewon Child's avatar
Rewon Child committed
729
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
730
731
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
732

mohammad's avatar
mohammad committed
733
734
735
736
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
737
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
738
739


740
741
742
743
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
744
745
746
747
748
749
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)