training.py 42.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
24
25
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
26
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
27

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
from megatron.initialize import set_jit_fusion_options
47
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
48
49
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
50
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
51
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
52
from megatron.utils import calc_params_l2_norm
53
from megatron.schedules import get_forward_backward_func
54
from megatron.utils import report_memory
55
from megatron.model.vision.knn_monitor import compute_feature_bank
56

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
57

58
59
60
61
62
63
64
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


65
def pretrain(train_valid_test_dataset_provider,
66
             model_provider,
67
             model_type,
68
             forward_step_func,
69
             process_non_loss_data_func=None,
70
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
71
             args_defaults={}):
72
73
74
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
75
76
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
77
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
78
        4) train the modle using the forward_step_func.
79
80

    Arguments:
81
82
83
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
84
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
85
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
86
87
88
89
90
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
91
92
93
94
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
95
96
97
98
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
99
100
    """

101
    # Initalize and get arguments, timers, and Tensorboard writer.
102
103
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
104
105
    # Set pytorch JIT layer fusion options and warmup JIT functions.
    set_jit_fusion_options()
106

107
108
109
110
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
111
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
112
113
114
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
115
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
116
117
118
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

119
    args = get_args()
Mohammad's avatar
Mohammad committed
120
    timers = get_timers()
121
122

    # Model, optimizer, and learning rate.
123
    timers('model-and-optimizer-setup').start()
124
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
125
                                                               model_type)
126
    timers('model-and-optimizer-setup').stop()
127
128
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
129
130

    # Data stuff.
131
132
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
133
        all_data_iterators = [
134
135
136
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
137
138
139
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
140
141
142
143
144
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
145
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
146
147

    # Print setup timing.
148
149
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
150
    print_rank_0('training ...')
151
152

    iteration = 0
153
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
154
        iteration = train(forward_step_func,
155
                          model, optimizer, opt_param_scheduler,
156
157
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
158
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
159

160
161
162
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
163
                                   valid_data_iterator, model,
164
165
                                   iteration, process_non_loss_data_func,
                                   False)
166
167

    if args.save and iteration != 0:
168
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
169
170
171
172
173
174

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
175
176
                                   0, process_non_loss_data_func,
                                   True)
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
194
195
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
196
197
            iterations += 1
        # Reset
198
        update_num_microbatches(0, consistency_check=False)
199
200
201
202
203
204
205
206
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

207

208
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
209
    """Build the model."""
Mohammad's avatar
Mohammad committed
210
    args = get_args()
211
    args.model_type = model_type
212

213
    # Build model.
214
215
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
216
217
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
218
219
220
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
221
222
223
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
224
            this_model = model_provider_func(
225
226
227
                pre_process=pre_process,
                post_process=post_process
            )
228
            this_model.model_type = model_type
229
            model.append(this_model)
230
    else:
231
232
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
258

259
260
    if not isinstance(model, list):
        model = [model]
261

262
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
263
264
265
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
266
267
268
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
269

270
271
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
272
        print(' > number of parameters on (tensor, pipeline) '
273
              'model parallel rank ({}, {}): {}'.format(
274
275
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
276
277
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
278
279

    # GPU allocation.
280
281
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
282
283

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
284
285
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
286

287
288
289
290
291
292
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
293

294
295
296
297
298
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
299
300
301
302
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
303
304
305
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
306

307
    return model
308
309


310
def get_optimizer_param_scheduler(optimizer):
311
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
312
    args = get_args()
313

314
315
316
317
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
318
319
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
320
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
321
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
322
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
323
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
324
325
326
327
328
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
329
        update_train_iters(args)
330
331
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
332
333
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
334
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
335
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
336
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
337
            lr_warmup_steps = args.lr_warmup_samples
338
    else:
339
340
341
        raise Exception(
            'either train-iters or train-samples should be provided.')

342
    opt_param_scheduler = OptimizerParamScheduler(
343
        optimizer,
344
        max_lr=args.lr,
345
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
346
347
348
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
349
350
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
351
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
352
        wd_incr_style=args.weight_decay_incr_style,
353
354
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
355

356
    return opt_param_scheduler
357
358


359
360
361
362
363
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
364
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
365
    args = get_args()
366

367
    model = get_model(model_provider_func, model_type)
368

369
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
370
                                   (torchDDP, LocalDDP, Float16Module))
371
372
    optimizer = get_megatron_optimizer(unwrapped_model, no_wd_decay_cond,
                                       scale_lr_cond, lr_mult)
373

374
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
375
376

    if args.load is not None:
377
378
379
380
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
381
        timers('load-checkpoint').start()
382
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
383
        torch.distributed.barrier()
384
385
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
386
387
388
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
389
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
390
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
391
392
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
393
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
394
395
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
396
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
397
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
398
399
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
400

401
    return model, optimizer, opt_param_scheduler
402
403


404
def train_step(forward_step_func, data_iterator,
405
               model, optimizer, opt_param_scheduler):
406
407
408
409
410
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
411
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
412
413
        for partition in model:
            partition.zero_grad_buffer()
414
    optimizer.zero_grad()
415

416
    forward_backward_func = get_forward_backward_func()
417
418
419
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
420

421
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
422
    if args.empty_unused_memory_level >= 1:
423
424
        torch.cuda.empty_cache()

425
426
    # All-reduce layernorm parameters across model parallel nodes
    # when sequence parallelism is used
427
    if mpu.get_tensor_model_parallel_world_size() > 1 and \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
428
            args.sequence_parallel:
429
430
431
432
433
        grads = []
        for model_module in model:
            unwrapped_model = unwrap_model( 
                model_module, (torchDDP, LocalDDP, Float16Module))
            for param in unwrapped_model.parameters():
434
435
436
                if getattr(param, 'sequence_parallel', False):
                    grad = param.main_grad if args.DDP_impl == 'local' else param.grad
                    grads.append(grad.data)
437
438
439
440
441
442
443
        coalesced = _flatten_dense_tensors(grads)
        torch.distributed.all_reduce(
            coalesced, group=mpu.get_tensor_model_parallel_group())
        for buf, synced in zip(grads, _unflatten_dense_tensors(
                coalesced, grads)):
            buf.copy_(synced)

444
445
    # All-reduce if needed.
    if args.DDP_impl == 'local':
446
        timers('backward-params-all-reduce').start()
447
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
448
            model_module.allreduce_gradients()
449
        timers('backward-params-all-reduce').stop()
450

451
452
453
454
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
455
    timers('backward-embedding-all-reduce').start()
456
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
457
            mpu.get_pipeline_model_parallel_world_size() > 1:
458
459
460
461
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
462
463
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
464
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
465
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
466

467
468
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
469
470
471
472
473
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
474

Vijay Korthikanti's avatar
Vijay Korthikanti committed
475
476
477
    # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
    # stages to ensure that position embeddings parameters stay in sync.
    # This should only run for T5 models with pipeline parallelism
Vijay Korthikanti's avatar
Vijay Korthikanti committed
478
479
480
481
482
483
    if mpu.is_rank_in_position_embedding_group() and \
            mpu.get_pipeline_model_parallel_world_size() > 1 and \
            args.pipeline_model_parallel_split_rank is not None:
        unwrapped_model = model[0]
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
484
485
        assert args.DDP_impl == 'local', \
            'T5 model is only supported with local DDP mode'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
486
487
        grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
        torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
488
    timers('backward-embedding-all-reduce').stop()
489

Vijay Korthikanti's avatar
Vijay Korthikanti committed
490
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
491
492
493
494
495
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)


496
497
    # Update parameters.
    timers('optimizer').start()
498
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
499
500
    timers('optimizer').stop()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
501
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
502
503
504
505
506
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)


507
    # Update learning rate.
508
    if update_successful:
509
510
511
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
512
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
513
        skipped_iter = 0
514
515
516
    else:
        skipped_iter = 1

517
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
518
    if args.empty_unused_memory_level >= 2:
519
520
        torch.cuda.empty_cache()

521
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
522
523
524
525
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
526
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
527
528
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
529
530


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
531
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
532
                 loss_scale, report_memory_flag, skipped_iter,
533
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
534
535
536
537
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
538

mohammad's avatar
mohammad committed
539
540
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
541
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
542
543
544
545
546
547
548
549
550
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
551
552
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
553
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
554
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
555
    for key in loss_dict:
mohammad's avatar
mohammad committed
556
        if not skipped_iter:
557
558
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
559
560
561
562
563
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
564
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
565
566
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
567
568
569

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
570

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
571
572
573
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
574
575
576
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
577
    add_to_logging('forward-backward-send-forward-backward-recv')
578
579
580
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
581
    add_to_logging('backward-send-forward-recv')
582
    add_to_logging('backward-send-backward-recv')
583
    add_to_logging('backward-params-all-reduce')
584
    add_to_logging('backward-embedding-all-reduce')
585
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
586
    add_to_logging('optimizer-unscale-and-check-inf')
587
588
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
589
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
590
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
591

mohammad's avatar
mohammad committed
592
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
593
594
595
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
596
597
598
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
599
    # Tensorboard values.
600
601
602
603
604
605
606
607
608
609
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
610
        for key in loss_dict:
mohammad's avatar
mohammad committed
611
612
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
613
                              args.consumed_train_samples)
614
615
616
617
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
618
619
620
621
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
622
623
624
625
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
626
627
628
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
629
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
630
631
632
633
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
634
635
636
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
654
655

    if iteration % args.log_interval == 0:
656
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
657
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
658
        if writer:
659
660
661
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
662
663
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
664
        log_string += ' consumed samples: {:12d} |'.format(
665
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
666
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
667
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
668
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
669
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
670
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
671
672
673
674
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
675
676
677
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
678
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
679
680
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
681
682
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
683
684
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
685
686
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
687
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
688
689
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
690
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
691
        total_loss_dict[nan_iters_key] = 0
692
        print_rank_last(log_string)
693
694
695
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
696
697
698
699
700
701
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


702
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
703
704
705
706
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
707
    timers('save-checkpoint').start()
708
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
709
    torch.distributed.barrier()
710
711
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
712
713


714
def train(forward_step_func, model, optimizer, opt_param_scheduler,
715
716
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
717
    """Train the model function."""
Mohammad's avatar
Mohammad committed
718
719
    args = get_args()
    timers = get_timers()
720

721
722
723
    # Write args to tensorboard
    write_args_to_tensorboard()

724
    # Turn on training mode which enables dropout.
725
726
    for model_module in model:
        model_module.train()
727
728
729
730
731
732
733

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

734
    timers('interval-time').start()
735
    print_datetime('before the start of training step')
736
737
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
738
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
739
        args.curr_iteration = iteration
740
741
742
743
744
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
745
                       opt_param_scheduler)
746
        iteration += 1
747
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
748
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
749
                                       get_num_microbatches()
750
751

        # Logging.
752
        loss_scale = optimizer.get_loss_scale().item()
753
754
755
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
756
757
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
758
                                          iteration, loss_scale,
759
                                          report_memory_flag, skipped_iter,
760
                                          grad_norm, params_norm, num_zeros_in_grad)
761
762

        # Autoresume
763
764
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
765
            check_adlr_autoresume_termination(iteration, model, optimizer,
766
                                              opt_param_scheduler)
767
768
769
770
771
772

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
773
                                       valid_data_iterator, model,
774
775
                                       iteration, process_non_loss_data_func,
                                       False)
776

777
778
        # Checkpointing
        saved_checkpoint = False
779
780
781
782
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
783
                                         opt_param_scheduler)
784
785
786
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

787
788
789
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
790
                                     opt_param_scheduler)
791
792
            saved_checkpoint = True

793
794
795
796
797
798
799
800
801
802
803
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
804
                                             opt_param_scheduler)
805
                print_datetime('exiting program after {} minutes'.format(train_time))
806
807
                sys.exit()

808
        # Exiting based on iterations
809
        if args.exit_interval and iteration % args.exit_interval == 0:
810
811
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
812
                                         opt_param_scheduler)
813
            torch.distributed.barrier()
814
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
815
            sys.exit()
816

817

mohammad's avatar
mohammad committed
818
    return iteration
819
820


821
822
823
824
825
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
826
    """Evaluation."""
Mohammad's avatar
Mohammad committed
827
    args = get_args()
828

Vijay Korthikanti's avatar
Vijay Korthikanti committed
829
830
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
831

832
    # Turn on evaluation mode which disables dropout.
833
834
    for model_module in model:
        model_module.eval()
835
836
837
838
839
840
841
842
843
844

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
845

846
            forward_backward_func = get_forward_backward_func()
847
848
849
850
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

851
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
852
            if args.empty_unused_memory_level >= 1:
853
854
                torch.cuda.empty_cache()

855
856
857
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
858
                    for key in loss_dict:
859
860
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
861

862
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
863
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
864
                                           * get_num_microbatches()
865
866
867
868
869
870
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

871
    # Move model back to the train mode.
872
873
    for model_module in model:
        model_module.train()
874
875

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
876
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
877

878
    return total_loss_dict, collected_non_loss_data
879
880
881

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
882
883
                               iteration, process_non_loss_data_func,
                               verbose=False):
884
    """Helper function to evaluate and dump results on screen."""
885
    args = get_args()
Mohammad's avatar
Mohammad committed
886
887
    writer = get_tensorboard_writer()

888
889
890
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
891
892
893
894
895
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
896
        if writer:
mohammad's avatar
mohammad committed
897
            writer.add_scalar('{} validation'.format(key),
898
899
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
900
            writer.add_scalar('{} validation vs samples'.format(key),
901
902
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
903
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
904
                writer.add_scalar('{} validation ppl'.format(key), ppl,
905
                                  iteration)
mohammad's avatar
mohammad committed
906
                writer.add_scalar('{} validation ppl vs samples'.format(key),
907
                                  ppl, args.consumed_train_samples)
908

909
910
911
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

912
    length = len(string) + 1
913
914
915
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
916
917


Vijay Korthikanti's avatar
Vijay Korthikanti committed
918
def cyclic_iter(iter):
919
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
920
        for x in iter:
921
922
            yield x

923
924
925
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
926
    args = get_args()
927

928
929
930
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
931
932
933

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
934
935
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
936
        args.consumed_train_samples = args.iteration * args.global_batch_size
937
    if args.iteration > 0 and args.consumed_valid_samples == 0:
938
939
940
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
941

942
    # Data loader only on rank 0 of each model parallel group.
943
    if mpu.get_tensor_model_parallel_rank() == 0:
944
945

        # Number of train/valid/test samples.
946
947
948
949
950
951
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
952
        test_iters = args.eval_iters
953
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
954
955
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
956
957
958
959
960
961
962
963
964
965
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
966
967
968
969
970
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
971
972
973
974
975
976
977
978
979
980
981
982
983

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
984
985
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
986
987
988
989
990
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
991
992
993
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

994
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
995
996
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
997
998
999
    else:
        train_data_iterator = None

1000
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1001
1002
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
1003
    else:
1004
        valid_data_iterator = None
1005

1006
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1007
1008
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
1009
1010
1011
    else:
        test_data_iterator = None

1012
    return train_data_iterator, valid_data_iterator, test_data_iterator