training.py 38.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
47
48
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
55


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
68
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
69
             args_defaults={}):
70
71
72
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
73
74
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
75
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
76
        4) train the modle using the forward_step_func.
77
78

    Arguments:
79
80
81
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
82
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
83
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
84
85
86
87
88
89
90
91
92
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
93
94
    """

95
    # Initalize and get arguments, timers, and Tensorboard writer.
96
97
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
98

99
100
101
102
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
103
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
104
105
106
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
107
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
108
109
110
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

111
    args = get_args()
Mohammad's avatar
Mohammad committed
112
    timers = get_timers()
113
114

    # Model, optimizer, and learning rate.
115
    timers('model-and-optimizer-setup').start()
116
117
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider,
                                                               model_type)
118
    timers('model-and-optimizer-setup').stop()
119
120
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
121
122

    # Data stuff.
123
124
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
125
        all_data_iterators = [
126
127
128
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
129
130
131
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
132
133
134
135
136
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
137
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
138
139

    # Print setup timing.
140
141
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
142
    print_rank_0('training ...')
143
144

    iteration = 0
145
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
146
147
148
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
149
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
150

151
152
153
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
154
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
155
                                   iteration, False)
156
157

    if args.save and iteration != 0:
158
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
159
160
161
162
163
164

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
165
                                   0, True)
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
183
184
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
185
186
            iterations += 1
        # Reset
187
        update_num_microbatches(0, consistency_check=False)
188
189
190
191
192
193
194
195
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

196

197
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
198
    """Build the model."""
Mohammad's avatar
Mohammad committed
199
    args = get_args()
200
    args.model_type = model_type
201

202
    # Build model.
203
204
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
205
206
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
207
208
209
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
210
211
212
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
213
            this_model = model_provider_func(
214
215
216
                pre_process=pre_process,
                post_process=post_process
            )
217
            this_model.model_type = model_type
218
            model.append(this_model)
219
    else:
220
221
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
247

248
249
    if not isinstance(model, list):
        model = [model]
250

251
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
252
253
254
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
255
256
257
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
258

259
260
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
261
        print(' > number of parameters on (tensor, pipeline) '
262
              'model parallel rank ({}, {}): {}'.format(
263
264
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
265
266
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
267
268

    # GPU allocation.
269
270
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
271
272

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
273
274
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
275

276
277
278
279
280
281
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
282

283
284
285
286
287
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
288
289
            for model_module in model:
                model_module.broadcast_params()
290
291
292
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
293

294
    return model
295
296


Mohammad's avatar
Mohammad committed
297
def get_learning_rate_scheduler(optimizer):
298
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
299
    args = get_args()
300

301
302
303
304
305
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
306
307
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
308
309
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
310
311
312
313
314
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
315
        update_train_iters(args)
316
317
318
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
319
320
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
321
322
        else:
            warmup_steps = args.lr_warmup_samples
323
    else:
324
325
326
        raise Exception(
            'either train-iters or train-samples should be provided.')

327
328
    lr_scheduler = AnnealingLR(
        optimizer,
329
        max_lr=args.lr,
330
        min_lr=args.min_lr,
331
332
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
333
        decay_style=args.lr_decay_style,
334
335
336
337
338
339
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


340
def setup_model_and_optimizer(model_provider_func, model_type):
341
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
342
    args = get_args()
343

344
    model = get_model(model_provider_func, model_type)
345

346
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
347
                                   (torchDDP, LocalDDP, Float16Module))
348
349
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
350
    lr_scheduler = get_learning_rate_scheduler(optimizer)
351
352

    if args.load is not None:
353
354
355
356
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
357
        timers('load-checkpoint').start()
358
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
359
        torch.distributed.barrier()
360
361
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
362
363
364
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
365
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
366
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
367
368
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
369
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
370
371
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
372
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
373
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
374
375
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
376

377
378
379
    return model, optimizer, lr_scheduler


380
381
382
383
384
385
386
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
387
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
388
389
        for partition in model:
            partition.zero_grad_buffer()
390
    optimizer.zero_grad()
391

392
    forward_backward_func = get_forward_backward_func()
393
394
395
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
396

397
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
398
    if args.empty_unused_memory_level >= 1:
399
400
        torch.cuda.empty_cache()

401
402
    # All-reduce if needed.
    if args.DDP_impl == 'local':
403
        timers('backward-params-all-reduce').start()
404
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
405
            model_module.allreduce_gradients()
406
        timers('backward-params-all-reduce').stop()
407

408
409
410
411
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
412
    timers('backward-embedding-all-reduce').start()
413
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
414
            mpu.get_pipeline_model_parallel_world_size() > 1:
415
416
417
418
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
419
420
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
421
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
422
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
423

424
425
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
426
427
428
429
430
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
431

Vijay Korthikanti's avatar
Vijay Korthikanti committed
432
433
434
    # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
    # stages to ensure that position embeddings parameters stay in sync.
    # This should only run for T5 models with pipeline parallelism
Vijay Korthikanti's avatar
Vijay Korthikanti committed
435
436
437
438
439
440
    if mpu.is_rank_in_position_embedding_group() and \
            mpu.get_pipeline_model_parallel_world_size() > 1 and \
            args.pipeline_model_parallel_split_rank is not None:
        unwrapped_model = model[0]
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
441
442
        assert args.DDP_impl == 'local', \
            'T5 model is only supported with local DDP mode'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
443
444
        grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
        torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
445
    timers('backward-embedding-all-reduce').stop()
446

447
448
    # Update parameters.
    timers('optimizer').start()
449
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
450
451
452
    timers('optimizer').stop()

    # Update learning rate.
453
    if update_successful:
454
455
456
457
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
458
        skipped_iter = 0
459
460
461
    else:
        skipped_iter = 1

462
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
463
    if args.empty_unused_memory_level >= 2:
464
465
        torch.cuda.empty_cache()

466
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
467
468
469
470
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
471
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
472
473
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
474
475


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
476
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
477
                 loss_scale, report_memory_flag, skipped_iter,
478
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
479
480
481
482
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
483

mohammad's avatar
mohammad committed
484
485
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
486
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
487
488
489
490
491
492
493
494
495
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
496
497
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
498
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
499
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
500
    for key in loss_dict:
mohammad's avatar
mohammad committed
501
        if not skipped_iter:
502
503
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
504
505
506
507
508
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
509
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
510
511
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
512
513
514

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
515

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
516
517
518
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
519
520
521
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
522
    add_to_logging('forward-backward-send-forward-backward-recv')
523
524
525
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
526
    add_to_logging('backward-send-forward-recv')
527
    add_to_logging('backward-send-backward-recv')
528
    add_to_logging('backward-params-all-reduce')
529
    add_to_logging('backward-embedding-all-reduce')
530
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
531
    add_to_logging('optimizer-unscale-and-check-inf')
532
533
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
534
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
535
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
536

mohammad's avatar
mohammad committed
537
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
538
539
540
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
541
542
543
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
544
    # Tensorboard values.
545
546
547
548
549
550
551
552
553
554
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
555
        for key in loss_dict:
mohammad's avatar
mohammad committed
556
557
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
558
                              args.consumed_train_samples)
559
560
561
562
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
563
564
565
566
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
567
568
569
570
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
571
572
573
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
574
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
575
576
577
578
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
579
580
581
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
599
600

    if iteration % args.log_interval == 0:
601
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
602
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
603
        if writer:
604
605
606
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
607
608
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
609
        log_string += ' consumed samples: {:12d} |'.format(
610
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
611
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
612
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
613
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
614
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
615
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
616
617
618
619
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
620
621
622
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
623
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
624
625
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
626
627
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
628
629
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
630
631
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
632
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
633
634
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
635
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
636
        total_loss_dict[nan_iters_key] = 0
637
        print_rank_last(log_string)
638
639
640
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
641
642
643
644
645
646
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


647
648
649
650
651
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
652
    timers('save-checkpoint').start()
653
654
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
655
656
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
657
658


659
def train(forward_step_func, model, optimizer, lr_scheduler,
660
          train_data_iterator, valid_data_iterator):
661
    """Train the model function."""
Mohammad's avatar
Mohammad committed
662
663
    args = get_args()
    timers = get_timers()
664

665
666
667
    # Write args to tensorboard
    write_args_to_tensorboard()

668
    # Turn on training mode which enables dropout.
669
670
    for model_module in model:
        model_module.train()
671
672
673
674
675
676
677

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

678
    timers('interval-time').start()
679
    print_datetime('before the start of training step')
680
681
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
682
        update_num_microbatches(args.consumed_train_samples)
683
684
685
686
687
688
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
689
        iteration += 1
690
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
691
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
692
                                       get_num_microbatches()
693
694

        # Logging.
695
        loss_scale = optimizer.get_loss_scale().item()
696
697
698
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
699
700
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
701
                                          iteration, loss_scale,
702
                                          report_memory_flag, skipped_iter,
703
                                          grad_norm, params_norm, num_zeros_in_grad)
704
705

        # Autoresume
706
707
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
708
            check_adlr_autoresume_termination(iteration, model, optimizer,
709
                                              lr_scheduler)
710
711
712
713
714
715

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
716
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
717
                                       iteration, False)
718

719
720
        # Checkpointing
        saved_checkpoint = False
721
722
723
724
725
726
727
728
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

729
730
731
732
733
734
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

735
736
737
738
739
740
741
742
743
744
745
746
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
747
                print_datetime('exiting program after {} minutes'.format(train_time))
748
749
                sys.exit()

750
        # Exiting based on iterations
751
        if args.exit_interval and iteration % args.exit_interval == 0:
752
753
754
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
755
            torch.distributed.barrier()
756
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
757
            sys.exit()
758

759

mohammad's avatar
mohammad committed
760
    return iteration
761
762


Mohammad's avatar
Mohammad committed
763
def evaluate(forward_step_func, data_iterator, model, verbose=False):
764
    """Evaluation."""
Mohammad's avatar
Mohammad committed
765
    args = get_args()
766
767

    # Turn on evaluation mode which disables dropout.
768
769
    for model_module in model:
        model_module.eval()
770
771
772
773
774
775
776
777
778
779

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
780

781
            forward_backward_func = get_forward_backward_func()
782
783
784
785
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

786
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
787
            if args.empty_unused_memory_level >= 1:
788
789
                torch.cuda.empty_cache()

790
791
792
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
793
                    for key in loss_dict:
794
795
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
796

797
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
798
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
799
                                           * get_num_microbatches()
800
    # Move model back to the train mode.
801
802
    for model_module in model:
        model_module.train()
803
804

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
805
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
806
807
808
809
810

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
811
                               iteration, verbose=False):
812
    """Helper function to evaluate and dump results on screen."""
813
    args = get_args()
Mohammad's avatar
Mohammad committed
814
815
816
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
817
818
819
820
821
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
822
        if writer:
mohammad's avatar
mohammad committed
823
            writer.add_scalar('{} validation'.format(key),
824
825
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
826
            writer.add_scalar('{} validation vs samples'.format(key),
827
828
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
829
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
830
                writer.add_scalar('{} validation ppl'.format(key), ppl,
831
                                  iteration)
mohammad's avatar
mohammad committed
832
                writer.add_scalar('{} validation ppl vs samples'.format(key),
833
                                  ppl, args.consumed_train_samples)
834
835

    length = len(string) + 1
836
837
838
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
839
840


Vijay Korthikanti's avatar
Vijay Korthikanti committed
841
def cyclic_iter(iter):
842
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
843
        for x in iter:
844
845
            yield x

846
847
848
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
849
    args = get_args()
850

851
852
853
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
854
855
856

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
857
858
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
859
        args.consumed_train_samples = args.iteration * args.global_batch_size
860
    if args.iteration > 0 and args.consumed_valid_samples == 0:
861
862
863
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
864

865
    # Data loader only on rank 0 of each model parallel group.
866
    if mpu.get_tensor_model_parallel_rank() == 0:
867
868

        # Number of train/valid/test samples.
869
870
871
872
873
874
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
875
        test_iters = args.eval_iters
876
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
877
878
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
879
880
881
882
883
884
885
886
887
888
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
889
890
891
892
893
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
894
895
896
897
898
899
900
901
902
903
904
905
906

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
907
908
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
909
910
911
912
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
913

914
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
915
916
917
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

918
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
919
920
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
921
922
923
    else:
        train_data_iterator = None

924
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
925
926
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
927
    else:
928
        valid_data_iterator = None
929

930
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
931
932
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
933
934
935
    else:
        test_data_iterator = None

936
    return train_data_iterator, valid_data_iterator, test_data_iterator