training.py 36.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
from megatron.model import Float16Module
41
from megatron.model import ModelType
mohammad's avatar
mohammad committed
42
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
47
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
48
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
50
from megatron.utils import calc_params_l2_norm
51
from megatron.schedules import get_forward_backward_func
52
from megatron.utils import report_memory
53
54


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55

56
57
58
59
60
61
62
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


63
def pretrain(train_valid_test_dataset_provider,
64
             model_provider,
65
             model_type,
66
67
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
68
             args_defaults={}):
69
70
71
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
72
73
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
74
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
75
        4) train the modle using the forward_step_func.
76
77

    Arguments:
78
79
80
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
81
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
82
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
83
84
85
86
87
88
89
90
91
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
92
93
    """

94
    # Initalize and get arguments, timers, and Tensorboard writer.
95
96
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
97

98
99
100
101
102
103
104
105
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
106
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
107
108
109
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

110
    args = get_args()
Mohammad's avatar
Mohammad committed
111
    timers = get_timers()
112
113

    # Model, optimizer, and learning rate.
114
    timers('model-and-optimizer-setup').start()
115
116
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider,
                                                               model_type)
117
    timers('model-and-optimizer-setup').stop()
118
119
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
120
121

    # Data stuff.
122
123
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
124
        all_data_iterators = [
125
126
127
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
128
129
130
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
131
132
133
134
135
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
136
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
137
138

    # Print setup timing.
139
140
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
141
    print_rank_0('training ...')
142
143

    iteration = 0
144
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
145
146
147
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
148
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
149

150
151
152
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
153
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
154
                                   iteration, False)
155
156

    if args.save and iteration != 0:
157
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
158
159
160
161
162
163

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
164
                                   0, True)
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
182
183
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
184
185
            iterations += 1
        # Reset
186
        update_num_microbatches(0, consistency_check=False)
187
188
189
190
191
192
193
194
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

195

196
def get_model(model_provider_func, model_type):
197
    """Build the model."""
Mohammad's avatar
Mohammad committed
198
    args = get_args()
199
    args.model_type = model_type
200

201
    # Build model.
202
203
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
204
205
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
206
207
208
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
209
210
211
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
212
            this_model = model_provider_func(
213
214
215
                pre_process=pre_process,
                post_process=post_process
            )
216
            this_model.model_type = model_type
217
            model.append(this_model)
218
    else:
219
220
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
246

247
248
    if not isinstance(model, list):
        model = [model]
249

250
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
251
252
253
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
254
255
256
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
257

258
259
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
260
        print(' > number of parameters on (tensor, pipeline) '
261
              'model parallel rank ({}, {}): {}'.format(
262
263
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
264
265
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
266
267

    # GPU allocation.
268
269
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
270
271

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
272
273
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
274
275
276

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
277
278
279
        model = [torchDDP(model_module, device_ids=[i], output_device=i,
                          process_group=mpu.get_data_parallel_group())
                 for model_module in model]
280
        return model
281

282
    if args.DDP_impl == 'local':
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
283
284
285
286
        model = [LocalDDP(model_module,
                          args.accumulate_allreduce_grads_in_fp32,
                          args.use_contiguous_buffers_in_ddp)
                 for model_module in model]
287
288
        return model

289
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
290
                              'Exiting.'.format(args.DDP_impl))
291
292


Mohammad's avatar
Mohammad committed
293
def get_learning_rate_scheduler(optimizer):
294
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
295
    args = get_args()
296

297
298
299
300
301
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
302
303
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
304
305
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
306
307
308
309
310
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
311
        update_train_iters(args)
312
313
314
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
315
316
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
317
318
        else:
            warmup_steps = args.lr_warmup_samples
319
    else:
320
321
322
        raise Exception(
            'either train-iters or train-samples should be provided.')

323
324
    lr_scheduler = AnnealingLR(
        optimizer,
325
        max_lr=args.lr,
326
        min_lr=args.min_lr,
327
328
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
329
        decay_style=args.lr_decay_style,
330
331
332
333
334
335
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


336
def setup_model_and_optimizer(model_provider_func, model_type):
337
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
338
    args = get_args()
339

340
    model = get_model(model_provider_func, model_type)
341

342
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
343
                                   (torchDDP, LocalDDP, Float16Module))
344
345
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
346
    lr_scheduler = get_learning_rate_scheduler(optimizer)
347
348

    if args.load is not None:
349
350
351
352
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
353
        timers('load-checkpoint').start()
354
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
355
        torch.distributed.barrier()
356
357
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
358
359
360
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
361
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
362
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
363
364
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
365
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
366
367
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
368
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
369
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
370
371
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
372

373
374
375
    return model, optimizer, lr_scheduler


376
377
378
379
380
381
382
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
383
384
385
386
387
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_ddp:
        for partition in model:
            partition.zero_grad_buffer()
    else:
        optimizer.zero_grad()
388

389
    forward_backward_func = get_forward_backward_func()
390
391
392
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
393
394
395

    # All-reduce if needed.
    if args.DDP_impl == 'local':
396
        timers('backward-params-all-reduce').start()
397
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
398
            model_module.allreduce_gradients()
399
        timers('backward-params-all-reduce').stop()
400

401
402
403
404
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
405
    timers('backward-embedding-all-reduce').start()
406
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
407
            mpu.get_pipeline_model_parallel_world_size() > 1:
408
409
410
411
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
412
413
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
414
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
415
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
416

417
418
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
419
420
421
422
423
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
424
    timers('backward-embedding-all-reduce').stop()
425

426
427
    # Update parameters.
    timers('optimizer').start()
428
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
429
430
431
    timers('optimizer').stop()

    # Update learning rate.
432
    if update_successful:
433
434
435
436
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
437
        skipped_iter = 0
438
439
440
    else:
        skipped_iter = 1

441
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
442
443
444
445
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
446
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
447
448
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
449
450


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
451
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
452
                 loss_scale, report_memory_flag, skipped_iter,
453
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
454
455
456
457
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
458

mohammad's avatar
mohammad committed
459
460
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
461
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
462
463
464
465
466
467
468
469
470
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
471
472
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
473
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
474
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
475
    for key in loss_dict:
mohammad's avatar
mohammad committed
476
        if not skipped_iter:
477
478
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
479
480
481
482
483
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
484
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
485
486
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
487
488
489

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
490

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
491
492
493
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
494
495
496
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
497
    add_to_logging('forward-backward-send-forward-backward-recv')
498
499
500
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
501
    add_to_logging('backward-send-forward-recv')
502
    add_to_logging('backward-send-backward-recv')
503
    add_to_logging('backward-params-all-reduce')
504
    add_to_logging('backward-embedding-all-reduce')
505
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
506
    add_to_logging('optimizer-unscale-and-check-inf')
507
508
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
509
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
510
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
511

mohammad's avatar
mohammad committed
512
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
513
514
515
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
516
517
518
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
519
    # Tensorboard values.
520
521
522
523
524
525
526
527
528
529
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
530
        for key in loss_dict:
mohammad's avatar
mohammad committed
531
532
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
533
                              args.consumed_train_samples)
534
535
536
537
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
538
539
540
541
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
542
543
544
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
545
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
546
547
548
549
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
550
551
552
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
570
571

    if iteration % args.log_interval == 0:
572
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
573
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
574
        if writer and torch.distributed.get_rank() == 0:
575
576
577
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
578
579
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
580
        log_string += ' consumed samples: {:12d} |'.format(
581
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
582
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
583
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
584
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
585
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
586
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
587
588
589
590
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
591
592
593
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
594
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
595
596
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
597
598
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
599
600
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
601
602
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
603
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
604
605
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
606
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
607
        total_loss_dict[nan_iters_key] = 0
608
        print_rank_last(log_string)
609
610
611
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
612
613
614
615
616
617
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


618
619
620
621
622
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
623
    timers('save-checkpoint').start()
624
625
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
626
627
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
628
629


630
def train(forward_step_func, model, optimizer, lr_scheduler,
631
          train_data_iterator, valid_data_iterator):
632
    """Train the model function."""
Mohammad's avatar
Mohammad committed
633
634
    args = get_args()
    timers = get_timers()
635

636
637
638
    # Write args to tensorboard
    write_args_to_tensorboard()

639
    # Turn on training mode which enables dropout.
640
641
    for model_module in model:
        model_module.train()
642
643
644
645
646
647
648

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

649
    timers('interval-time').start()
650
    print_datetime('before the start of training step')
651
652
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
653
        update_num_microbatches(args.consumed_train_samples)
654
655
656
657
658
659
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
660
        iteration += 1
661
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
662
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
663
                                       get_num_microbatches()
664
665

        # Logging.
666
        loss_scale = optimizer.get_loss_scale().item()
667
668
669
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
670
671
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
672
                                          iteration, loss_scale,
673
                                          report_memory_flag, skipped_iter,
674
                                          grad_norm, params_norm, num_zeros_in_grad)
675
676

        # Autoresume
677
678
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
679
            check_adlr_autoresume_termination(iteration, model, optimizer,
680
                                              lr_scheduler)
681
682
683
684
685
686

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
687
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
688
                                       iteration, False)
689

690
691
692
693
694
695
696
697
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

698
699
700
701
702
703
704
705
706
707
708
709
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
710
                print_datetime('exiting program after {} minutes'.format(train_time))
711
712
                sys.exit()

713
        # Exiting based on iterations
714
        if args.exit_interval and iteration % args.exit_interval == 0:
715
716
717
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
718
            torch.distributed.barrier()
719
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
720
            sys.exit()
721

722

mohammad's avatar
mohammad committed
723
    return iteration
724
725


Mohammad's avatar
Mohammad committed
726
def evaluate(forward_step_func, data_iterator, model, verbose=False):
727
    """Evaluation."""
Mohammad's avatar
Mohammad committed
728
    args = get_args()
729
730

    # Turn on evaluation mode which disables dropout.
731
732
    for model_module in model:
        model_module.eval()
733
734
735
736
737
738
739
740
741
742

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
743

744
            forward_backward_func = get_forward_backward_func()
745
746
747
748
749
750
751
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
752
                    for key in loss_dict:
753
754
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
755

756
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
757
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
758
                                           * get_num_microbatches()
759
    # Move model back to the train mode.
760
761
    for model_module in model:
        model_module.train()
762
763

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
764
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
765
766
767
768
769

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
770
                               iteration, verbose=False):
771
    """Helper function to evaluate and dump results on screen."""
772
    args = get_args()
Mohammad's avatar
Mohammad committed
773
774
775
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
776
777
778
779
780
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
781
        if writer and is_last_rank():
mohammad's avatar
mohammad committed
782
            writer.add_scalar('{} validation'.format(key),
783
784
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
785
            writer.add_scalar('{} validation vs samples'.format(key),
786
787
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
788
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
789
                writer.add_scalar('{} validation ppl'.format(key), ppl,
790
                                  iteration)
mohammad's avatar
mohammad committed
791
                writer.add_scalar('{} validation ppl vs samples'.format(key),
792
                                  ppl, args.consumed_train_samples)
793
794

    length = len(string) + 1
795
796
797
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
798
799


Vijay Korthikanti's avatar
Vijay Korthikanti committed
800
def cyclic_iter(iter):
801
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
802
        for x in iter:
803
804
            yield x

805
806
807
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
808
    args = get_args()
809

810
811
812
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
813
814
815

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
816
817
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
818
        args.consumed_train_samples = args.iteration * args.global_batch_size
819
    if args.iteration > 0 and args.consumed_valid_samples == 0:
820
821
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
822
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
823
            args.eval_iters * args.global_batch_size
824

825
    # Data loader only on rank 0 of each model parallel group.
826
    if mpu.get_tensor_model_parallel_rank() == 0:
827
828

        # Number of train/valid/test samples.
829
830
831
832
833
834
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
835
        test_iters = args.eval_iters
836
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
837
838
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
839
840
841
842
843
844
845
846
847
848
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
849
850
851
852
853
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
854
855
856
857
858
859
860
861
862
863
864
865
866

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
867
868
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
869
870
871
872
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
873

874
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
875
876
877
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

878
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
879
880
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
881
882
883
    else:
        train_data_iterator = None

884
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
885
886
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
887
    else:
888
        valid_data_iterator = None
889

890
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
891
892
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
893
894
895
    else:
        test_data_iterator = None

896
    return train_data_iterator, valid_data_iterator, test_data_iterator