optimizer.py 61.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
# >>>
from lutil import pax, tp
34

35
DEBUG_ITERATION = 2 # 10
36
# <<<
mohammad's avatar
mohammad committed
37

Lawrence McAfee's avatar
Lawrence McAfee committed
38

mohammad's avatar
mohammad committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


54
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
59
60
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
64
65
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
66
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
68
69
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

70

mohammad's avatar
mohammad committed
71
72
73

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
75
76

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
77
                 params_have_main_grad,
78
                 use_contiguous_buffers_in_local_ddp):
79

mohammad's avatar
mohammad committed
80
81
82
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83
84
85
86
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
87
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88

89
        if self.use_contiguous_buffers_in_local_ddp:
90
91
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
92

Rewon Child's avatar
Rewon Child committed
93
    def get_parameters(self):
94
95
96
97
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
98
99
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
100

Lawrence McAfee's avatar
Lawrence McAfee committed
101
    def clip_grad_norm(self, clip_grad, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
102
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
103
        return
Lawrence McAfee's avatar
Lawrence McAfee committed
104
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
105
106
        params = self.get_parameters()
        return clip_grad_norm_fp32(params, clip_grad, ITERATION = ITERATION)
107

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
108

Rewon Child's avatar
Rewon Child committed
109
110
111
112
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
113

mohammad's avatar
mohammad committed
114
115
116
117
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118

mohammad's avatar
mohammad committed
119
120
    @abstractmethod
    def get_loss_scale(self):
121
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
122
123
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
124

mohammad's avatar
mohammad committed
125
126
127
128
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
129

Lawrence McAfee's avatar
Lawrence McAfee committed
130
    @abstractmethod
131
    def reduce_grads(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
132
133
134
        pass


mohammad's avatar
mohammad committed
135
136
137
138
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
139

Lawrence McAfee's avatar
Lawrence McAfee committed
140
141
142
143
144
    @abstractmethod
    def gather_params(self):
        pass


145
146
    @abstractmethod
    def reload_model_params(self):
147
148
149
150
151
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
152
153
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
154

mohammad's avatar
mohammad committed
155
156
157
158
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
159

mohammad's avatar
mohammad committed
160
161
162
163
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
164

mohammad's avatar
mohammad committed
165
166
167
168
169
170
171
172
173
174
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
175

mohammad's avatar
mohammad committed
176
177
178
179
180
181
182
183
184
185
186
187
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


Lawrence McAfee's avatar
Lawrence McAfee committed
188
class BaseFloat16Optimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
189
190

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
191
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
192
193
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
194

Lawrence McAfee's avatar
Lawrence McAfee committed
195
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
196
            optimizer, clip_grad, log_num_zeros_in_grad,
197
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
198

199
200
201
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
202
        self.bf16 = bf16
mohammad's avatar
mohammad committed
203
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
204
205
206
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
207
208
209

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
210
211
212
213
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
214
215

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
216
217
218
219
220
221
222
223
224
225
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
226

Lawrence McAfee's avatar
Lawrence McAfee committed
227
228
229
230
231
232
233

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
234
235
236
237
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


Lawrence McAfee's avatar
Lawrence McAfee committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def _unscale_main_grads_and_check_for_nan(self):

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
252
253
254
255
256
        # >>>
        # torch.distributed.all_reduce(self.found_inf,
        #                              op=torch.distributed.ReduceOp.MAX,
        #                              group=mpu.get_model_parallel_group())
        # +++
Lawrence McAfee's avatar
Lawrence McAfee committed
257
        torch.distributed.all_reduce(self.found_inf,
258
259
                                     op=torch.distributed.ReduceOp.MAX)
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
260
261
262
263
264
265

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
266
267
268
269
270
271
272
273
274
275
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    @classmethod
    def debug_general(cls, ITERATION, key, value):
        from megatron import get_args
        args = get_args()
        my_rank = torch.distributed.get_rank()
        if ITERATION != DEBUG_ITERATION:
            return
        for r in range(torch.distributed.get_world_size()):
            if my_rank == r:
276
                print("            + br/%s; [r%d, i%d]; %s, %.12e" % ("fix " if args.use_distributed_optimizer else "main", my_rank, ITERATION, key, value))
Lawrence McAfee's avatar
Lawrence McAfee committed
277
278
279
280
281
282
283
284
            torch.distributed.barrier()
        torch.distributed.barrier()
        # if my_rank == 0:
        #     raise Exception("debug.")
        # else:
        #     exit(0)
        exit(0)

285
286
287
    # def _debug_model(self, ITERATION, key, use_param):
    def debug_model(self, ITERATION, key, use_grad):
        use_grad = bool(use_grad)
288
        tensors = [
289
            (p.main_grad.float() if use_grad else p.float())
290
291
292
293
294
295
296
297
298
299
300
            for m in self.models for p in m.parameters()
        ]
        # pax(0, {
        #     "params" : params,
        #     "params / abs" : [ torch.abs(p) for p in params ],
        #     "params / abs / sum" : [ torch.sum(torch.abs(p)) for p in params ],
        # })
        count = sum(t.nelement() for t in tensors)
        return self.debug_general(
            ITERATION,
            "model/%s, %s [count %d]" % (
301
                "grad" if use_grad else "param",
302
303
304
                key,
                count,
            ),
305
306
            # sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
            sum(torch.sum(torch.abs(t)) for t in tensors),
307
        )
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    # def debug_model_param(self, ITERATION, key):
    #     return self._debug_model(ITERATION, key, True)
    # def debug_model_grad(self, ITERATION, key):
    #     return self._debug_model(ITERATION, key, False)

    # def _debug_main(self, ITERATION, key0, key1, f, ff):
    #     count = sum(
    #         p.nelement()
    #         for g in self.optimizer.param_groups
    #         for p in g["params"]
    #     )
    #     return self.debug_general(
    #         ITERATION,
    #         "main/%s, %s [count %d]" % (key1, key0, count),
    #         sum(ff(f(p))
    #             for g in self.optimizer.param_groups
    #             for p in g["params"]).item() / count,
    #     )
    # def debug_main_param(self, ITERATION, key):
Lawrence McAfee's avatar
Lawrence McAfee committed
327
328
329
    #     return self._debug_main(
    #         ITERATION,
    #         key,
330
331
332
333
    #         "param", # sum",
    #         # lambda p : p,
    #         lambda p : torch.abs(p),
    #         torch.sum,
Lawrence McAfee's avatar
Lawrence McAfee committed
334
    #     )
335
    # def debug_main_grad(self, ITERATION, key):
Lawrence McAfee's avatar
Lawrence McAfee committed
336
337
338
    #     return self._debug_main(
    #         ITERATION,
    #         key,
339
340
341
342
    #         "grad", # sum",
    #         # lambda p : p.grad,
    #         lambda p : torch.abs(p.grad),
    #         torch.sum,
Lawrence McAfee's avatar
Lawrence McAfee committed
343
    #     )
344
345
346
347
348
349
350
351
352
353
354
    # def _debug_main(self, ITERATION, key, use_param):
    def debug_main(self, ITERATION, key, use_grad):
        use_grad = bool(use_grad)
        tensors = [
            p.grad if use_grad else p
            for g in self.optimizer.param_groups
            for p in g["params"]
        ]
        tensors = [ t.float() for t in tensors ]
        count = sum(t.nelement() for t in tensors)
        return self.debug_general(
Lawrence McAfee's avatar
Lawrence McAfee committed
355
            ITERATION,
356
357
358
359
360
361
            "main/%s, %s [count %d]" % (
                "grad" if use_grad else "param",
                key,
                count,
            ),
            sum(torch.sum(torch.abs(t)) for t in tensors),
Lawrence McAfee's avatar
Lawrence McAfee committed
362
        )
363
364
365
366
    # def debug_main_param(self, ITERATION, key):
    #     return self._debug_main(ITERATION, key, True)
    # def debug_main_grad(self, ITERATION, key):
    #     return self._debug_main(ITERATION, key, False)
Lawrence McAfee's avatar
Lawrence McAfee committed
367
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
368
369

    @torch.no_grad()
370
    def step(self, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
371
372
373

        timers = get_timers()

374
375
376
        # >>>
        # self.debug_model_param(ITERATION, "before copy grad.")
        # self.debug_model_grad(ITERATION, "before copy grad.")
377
378
        # self.debug_main_param(ITERATION, "before copy grad.")
        # self.debug_main_grad(ITERATION, "before copy grad.")
379
380
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
381
382
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
383
        self._copy_model_grads_to_main_grads(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
384
385
        timers('optimizer-copy-to-main-grad').stop()

386
        # >>>
387
388
        # self.debug_model(ITERATION, "after copy grad.", 0)
        # self.debug_main(ITERATION, "after copy grad.", 1)
389
390
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
406
407
408
409
410
                pax(0, {
                    "main params" : self.get_main_params(),
                    "main grads" : self.get_main_grads(),
                    "found_inf_flag" : found_inf_flag,
                })
Lawrence McAfee's avatar
Lawrence McAfee committed
411
412
413
414
415
416
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
Lawrence McAfee's avatar
Lawrence McAfee committed
417
            grad_norm = self.clip_grad_norm(self.clip_grad, ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
418
419
420
421
422
423
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

424
425
426
427
428
429
430
431
432
433
434
435
        # >>>
        # param = self.optimizer.param_groups[0]["params"][0]
        # pax(0, {
        #     "param" : tp(param),
        #     "grad" : tp(param.grad),
        # })
        # <<<

        # >>>
        # self.debug_main(ITERATION, "before step.", 0)
        # <<<

436
437
438
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
439
        # >>>
440
        # self.debug_main(ITERATION, "after step.", 0)
Lawrence McAfee's avatar
Lawrence McAfee committed
441
442
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
443
444
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
445
        self._copy_main_params_to_model_params(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
446
447
        timers('optimizer-copy-main-to-model-params').stop()

448
        # >>>
449
450
        # self.debug_main_param(ITERATION, "after copy param.")
        # self.debug_main_grad(ITERATION, "after copy param.")
451
452
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
453
454
455
456
        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
485
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
486
487
488
489

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
490
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
491

mohammad's avatar
mohammad committed
492
        # ======================
493
        # main parameter stuff
mohammad's avatar
mohammad committed
494
495
496
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
497
498
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
499
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
500
501
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
502
503
504
505
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
506
            float16_params_this_group = []
mohammad's avatar
mohammad committed
507
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
508
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
509
510
511
512
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
513
514
515
516
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
517
                        # Create a copy
518
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
519
                        # Copy tensor model parallel attributes.
520
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
521
                                                                  param)
522
                        if hasattr(param, 'shared'):
523
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
524
                        # Replace the optimizer params with the new fp32 copy.
525
                        param_group['params'][i] = main_param
526

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
527
                        fp32_from_float16_params_this_group.append(main_param)
528
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
529
                        if param in self.optimizer.state:
530
531
532
                            # >>>
                            raise Exception("hi.")
                            # <<<
533
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
534
535
536
537
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
538
539
540
                        # >>>
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
541
542
543
544
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
545
546
547
548
549
550
551
552
553
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
554
555
556
557
558
559
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

Lawrence McAfee's avatar
Lawrence McAfee committed
560
561
562
563
564
565
566
567
568
569
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # params = self.get_parameters()
        # pax(0, {
        #     # "params / 0" : params[0],
        #     "params" : [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ (param_is_not_tensor_parallel_duplicate(p.grad), tp(p.grad)) for p in params ],
        # })
        # <<<

mohammad's avatar
mohammad committed
570
571
572

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
573
574
575
576
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
577
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
578
            _zero_grad_group_helper(group, set_to_none)
579
580
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
581
582
583
584
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


585
    # >>>
586
    def reduce_grads(self, model):
587
588
589
590
591
592
593
594
595
596
597
598
599

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
600

601
602
603
604
605
606
        # >>>
        # pax(0, {
        #     "grads" : [ p.main_grad for m in model for p in m.parameters() ],
        # })
        # <<<

607
608
609
610
611
612
613
        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
            for model_module in model:
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

614
615
616
617
618
619
        # >>>
        # pax(0, {
        #     "grads" : [ p.main_grad for m in model for p in m.parameters() ],
        # })
        # <<<

620
621
622
623
624
625
626
        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
627
            # >>>
628
            # raise Exception("[main] ready for weight sync?")
629
            # <<<
630
631
632
633
634
635
636
637
638
639
640
641
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
642
643
644
645
646
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
647
                # +++
648
649
650
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
651
652
653
654
655
656
657
658
                # <<<

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
659
660
661
            # >>>
            raise Exception("[main] ready for t5 sync?")
            # <<<
662
663
664
665
666
667
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
668
669
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
670
            # +++
671
672
673
674
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
675
676
677
            # <<<
        timers('backward-embedding-all-reduce').stop()

678
    def gather_params(self, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
679
        pass
Lawrence McAfee's avatar
Lawrence McAfee committed
680

681
    def _copy_model_grads_to_main_grads(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
682
683
684
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
685
            for model_param, main_param in zip(model_group, main_group):
686
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
687
688
689
690
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
691
692
693
694
695

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
696
                if self.params_have_main_grad and \
697
                   not self.use_contiguous_buffers_in_local_ddp:
698
699
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
700
701
702
703
704
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
705

706
707
708
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
709
                    if not self.use_contiguous_buffers_in_local_ddp:
710
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
711

712
713
714
715
716
717
718
719
720
721
        # >>>
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model grads" :
        #         [ p.main_grad for m in self.models for p in m.parameters() ],
        #     })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
722
723
    def _collect_main_grad_data_for_unscaling(self):

724
        main_grads = []
Lawrence McAfee's avatar
Lawrence McAfee committed
725
726

        # fp32 params from float16 ones.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
727
        for main_group in self.fp32_from_float16_groups:
728
729
730
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
731
732
733

        # pax(1, {"main_grads": main_grads})

mohammad's avatar
mohammad committed
734
        # Append fp32 parameters.
735
736
737
738
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
739
740
741
742
743
        
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # pax(1, {"main_grads": [ (param_is_not_tensor_parallel_duplicate(t), tp(t)) for t in main_grads ]})
        # <<<
mohammad's avatar
mohammad committed
744

Lawrence McAfee's avatar
Lawrence McAfee committed
745
        return main_grads
mohammad's avatar
mohammad committed
746
747


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
748
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
749
        model_data = []
750
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
751
752
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
753
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
754
                model_data.append(model_param.data)
755
756
                main_data.append(main_param.data)
        return model_data, main_data
757
758


759
    def _copy_main_params_to_model_params(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
760
761
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
762
763
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)
764
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
765
766
767
768
769
770
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model params" : [p for m in self.models for p in m.parameters()],
        #     })
771
        # <<<
772
773
774


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
775
776
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
777
778
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
779
780


mohammad's avatar
mohammad committed
781
782
783
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
784
785
786
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
787
788
789
790
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
791
792
793
794
795
796
797
798
799
800
801
802
803
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
804
805
806
807
808
809
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
810

811
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
812
813
814
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
815
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
816
817
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
818
819
820
821
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


822
# >>>
823
import math
824

825
from megatron import get_args
826

Lawrence McAfee's avatar
Lawrence McAfee committed
827
828
829
830
831
832
833
834
835
836
837
# class ShardIndex:
class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)

838
# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
Lawrence McAfee's avatar
Lawrence McAfee committed
839
840
# class Float16DistributedOptimizer(MegatronOptimizer):
class Float16DistributedOptimizer(BaseFloat16Optimizer):
841

842
    # >>>
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
    # @classmethod
    # def test_reduce_scatter(cls):

    #     torch.manual_seed(mpu.get_data_parallel_rank())
    #     size = (20,)
    #     dtype = torch.float
    #     device = torch.cuda.current_device()
    #     data_parallel_world_size = mpu.get_data_parallel_world_size()
    #     data_parallel_group = mpu.get_data_parallel_group()

    #     input_list = [
    #         # torch.randn(size, dtype = dtype, device = device)
    #         5 * torch.randint(low = 1, high = 3, size = size, dtype = dtype, device = device)
    #         for _ in range(data_parallel_world_size)
    #     ]
    #     output = torch.empty(size, dtype = dtype, device = device)

    #     torch.distributed.reduce_scatter(
    #         output,
    #         input_list,
    #         group = data_parallel_group,
    #     )

    #     if torch.distributed.get_rank() == 0:
    #         print(output)
    #     pax(0, {
    #         "data_parallel_world_size" : data_parallel_world_size,
    #         "data_parallel_group" : data_parallel_group,
    #         "input_list" : input_list,
    #         "output" : tp(output),
    #     })
874
875
    # <<<

876
    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
877
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):
878

Lawrence McAfee's avatar
Lawrence McAfee committed
879
880
        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
881
        param_shard_map = {}
Lawrence McAfee's avatar
Lawrence McAfee committed
882
        for param, param_world_indexes in param_world_index_map.items():
883

Lawrence McAfee's avatar
Lawrence McAfee committed
884
885
886
            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
887
                0,
Lawrence McAfee's avatar
Lawrence McAfee committed
888
889
890
891
892
893
894
895
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
Lawrence McAfee's avatar
Lawrence McAfee committed
896
897
898
                # param_world_shard = param_local_shard.normalize(param_world_start)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
899
900
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
Lawrence McAfee's avatar
Lawrence McAfee committed
901
                param_shard_map[param] = {
902
903
904
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
905
906
                }

Lawrence McAfee's avatar
Lawrence McAfee committed
907
        # pax(0, {"param_shard_map": [ str((str(p.shape), s)) for p,s in param_shard_map.items() ]})
908
909
910
911

        return param_shard_map

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
912
    def get_model_gbuf_shard(cls, model, dtype):
913

Lawrence McAfee's avatar
Lawrence McAfee committed
914
915
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
916
917

        # Grad buffer shard.
Lawrence McAfee's avatar
Lawrence McAfee committed
918
919
920
921
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

922
923
924
925
926
927
928
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
Lawrence McAfee's avatar
Lawrence McAfee committed
929
930
931
932
933
934
935
936
937
938
939
        gbuf_local_shard = gbuf_world_shard.normalize()

        # Param shards.
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
940
            "world_all" : gbuf_world_all_shards,
Lawrence McAfee's avatar
Lawrence McAfee committed
941
            "param_map" : param_shard_map,
942
943
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
944
        # pax(1, {"data": data})
945

Lawrence McAfee's avatar
Lawrence McAfee committed
946
        return data
947
948

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
949
    def get_model_gbuf_shard_map(cls, model):
950
        return {
Lawrence McAfee's avatar
Lawrence McAfee committed
951
            dtype : cls.get_model_gbuf_shard(model, dtype)
952
953
954
            for dtype in model._grad_buffers
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
955
956
    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
957

Lawrence McAfee's avatar
Lawrence McAfee committed
958
959
960
961
962
963
964
965
966
967
968
969
970
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    # assert param not in param_size_map
                    # param_size_map[param] = param_shard_map["local"].size
                    param_gbuf_map[param] = (model_index, dtype)
                    # pax(0, {
                    #     "dtype" : dtype,
                    #     "gbuf_shard_map" : gbuf_shard_map,
                    #     "param" : tp(param),
                    #     "param_shard_map" : param_shard_map,
                    # })
971

Lawrence McAfee's avatar
Lawrence McAfee committed
972
973
974
975
976
977
        # pax(0, {
        #     "model_gbuf_shards" : model_gbuf_shards,
        #     # "param_size_map" :
        #     # [ (str(p.shape), s) for p, s in param_size_map.items() ],
        #     "param_gbuf_map" : param_gbuf_map,
        # })
978

Lawrence McAfee's avatar
Lawrence McAfee committed
979
        return param_gbuf_map
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
1001
                    param_size = gbuf_shard_map["param_map"][param]["param"].size
1002
1003
1004
1005
1006
1007
1008
1009

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
                    # >>>
                    # if torch.distributed.get_rank() == 1:
                    #     print(">>> [%d] ... group %d, size %d, param %s. <<<" % (
                    #         torch.distributed.get_rank(),
                    #         group_index,
                    #         param_size,
                    #         str(tuple(param.shape)),
                    #     ))
                    # <<<

1020
1021
1022
1023
1024
1025
        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        # pax(0, {
1026
1027
1028
1029
1030
1031
        #     "param_group_map": [
        #         (g, str(p.shape))
        #         for p, g in param_group_map.items()
        #     ],
        #     "group_shards" : group_shards,
        # })
1032
1033
1034

        return group_shards

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

        # Allocate main param/grad shard.
        # ** torch.nn.Parameter ??
        # ** MemoryBuffer ??
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
        
        # main_param_shards = []
        for group_index, group_shard in enumerate(opt_group_shards):

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # ** todo: for dtype in model_main_dtypes ........ **

            # Allocate shard.
            # if group_size == 0:
            #     main_param = None
            # else:
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

            # main_param_shards.append(main_param)
            group_shard["orig_group"]["params"] = [ main_param ]

            # # Update optimizer group.
            # self.optimizer.param_groups[group_index]["params"] = [ main_param ]

        # pax(1, {
        #     "opt_group_shards" : opt_group_shards,
        #     "main_param_shards" : main_param_shards,
        # })

        # return main_param_shards

1076
1077
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
1078
                 bf16, grad_scaler, models):
1079
1080
1081

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
Lawrence McAfee's avatar
Lawrence McAfee committed
1082
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
1083
            bf16, grad_scaler, models)
1084

1085
1086
        # >>>
        args = get_args()
1087
        assert args.use_contiguous_buffers_in_local_ddp # already checked in args
1088
        # <<<
1089

Lawrence McAfee's avatar
Lawrence McAfee committed
1090
1091
1092
1093
        # # Data parallel info.
        # self.data_parallel_group = mpu.get_data_parallel_group()
        # self.data_parallel_rank = mpu.get_data_parallel_rank()
        # self.data_parallel_world_size = mpu.get_data_parallel_world_size()
1094

1095
1096
1097
1098
        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
Lawrence McAfee's avatar
Lawrence McAfee committed
1099
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)
1100

1101
1102
        # pax(0, {"param_gbuf_map": [ (str(tuple(p.shape)), d) for p, d in self.param_gbuf_map.items() ]})

1103
1104
1105
1106
1107
        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

1108
        # pax(0, {**{"opt_group_shards / %d" % i : g for i, g in enumerate(self.opt_group_shards)}})
Lawrence McAfee's avatar
Lawrence McAfee committed
1109

1110
1111
1112
1113
        # Allocate main param shards.
        # self.main_param_shards = \
        #     self.allocate_main_param_shards(self.opt_group_shards)
        self.allocate_main_param_shards(self.opt_group_shards)
1114

1115
        # >>>
1116
1117
1118
1119
1120
        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        #     "main_param_shards" : self.main_param_shards,
        # })
1121
1122
        # <<<

1123
1124
1125
1126
1127
        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
Lawrence McAfee's avatar
Lawrence McAfee committed
1128
1129
        self.optimizer.load_state_dict(self.optimizer.state_dict())

1130
1131
1132
1133
1134
1135
        # pax(0, {
        #     # "opt_group_shards" : self.opt_group_shards,
        #     # "param_groups" : self.optimizer.param_groups,
        #     "optimizer" : self.optimizer,
        #     "optimizer / state" : self.optimizer.state,
        # })
1136
        # pax(1, {
1137
1138
1139
1140
1141
        #     "optimizer" : self.optimizer,
        #     **{"optimizer / param_groups / %d" % i : g
        #        for i, g in enumerate(self.optimizer.param_groups)},
        #     "optimizer / state" : self.optimizer.state,
        #     "optimizer / state_dict" : self.optimizer.state_dict(),
1142
1143
1144
1145
        # })

        # Initialize main params.
        self._copy_model_params_to_main_params()
1146

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
    @staticmethod
    def has_nan_debug(tensors):
        if isinstance(tensors, torch.Tensor):
            tensors = [ tensors ]
        assert isinstance(tensors, list)
        has_nans = [ (not torch.all(torch.isfinite(t)).item()) for t in tensors ]
        has_nan = any(has_nans)
        return has_nan
    def get_local_model_param_views(self):
        '''** FOR DEBUGGING. **'''
        model_param_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                model_param_shard = gbuf_shard_map["param"]
                model_param_views.append(
                    param.view(-1)[model_param_shard.start:model_param_shard.end])
        return model_param_views
    def get_local_model_grad_views(self):
        '''** FOR DEBUGGING. **'''
        model_grad_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf = self.models[model_index]._grad_buffers[dtype].data
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                gbuf_world_shard = gbuf_shard_map["gbuf_world"]
                model_grad_views.append(
                    gbuf[gbuf_world_shard.start:gbuf_world_shard.end])
        return model_grad_views
    def get_world_model_params(self):
        '''** FOR DEBUGGING. **'''
        return [ p for m in self.models for p in m.parameters() ]
1183
1184
1185
    def get_world_model_grads(self):
        '''** FOR DEBUGGING. **'''
        return [ p.main_grad for p in self.get_world_model_params() ]
1186
1187
1188
1189
1190

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
1191
    def get_main_param(self, group_index):
1192
1193
        # return self.optimizer.param_groups[group_index]["params"][0]
        return self.get_main_params()[group_index]
1194
1195
1196
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

1197
1198
1199
1200
1201
1202
    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")
Lawrence McAfee's avatar
Lawrence McAfee committed
1203
1204
1205

    def zero_grad(self, set_to_none=True):

Lawrence McAfee's avatar
Lawrence McAfee committed
1206
        model_params = []
Lawrence McAfee's avatar
Lawrence McAfee committed
1207
1208
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1209
1210
1211
1212
                model_params.extend(param_map.keys())
        # main_params = []
        # for main_group in self.optimizer.param_groups:
        #     main_params.extend(main_group["params"])
Lawrence McAfee's avatar
Lawrence McAfee committed
1213

1214
1215
        # ** using contiguous buffer; don't set_to_none **
        _zero_grad_group_helper(model_params, set_to_none = False) # set_to_none)
Lawrence McAfee's avatar
Lawrence McAfee committed
1216
        # _zero_grad_group_helper(params, set_to_none = False)
Lawrence McAfee's avatar
Lawrence McAfee committed
1217

1218
        # pax(0, {"model_params": model_params})
1219

1220
1221
    def get_model_grad_buffer_dp_views(self):

Lawrence McAfee's avatar
Lawrence McAfee committed
1222
        # >>>
1223
1224
1225
        # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
        args = get_args()
        assert args.use_contiguous_buffers_in_local_ddp
Lawrence McAfee's avatar
Lawrence McAfee committed
1226
        # <<<
1227
1228
1229
1230
1231
1232

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf_shard in self.model_gbuf_shards[model_index].items():
                world_shards = gbuf_shard["world_all"]
1233
1234
                gbuf = model._grad_buffers[dtype].data
                gbuf_views = [ gbuf[s.start:s.end] for s in world_shards ]
1235
1236
                gbuf_view_items.append((model_index, dtype, gbuf_views))

1237
1238
1239
1240
1241
                # pax(0, {
                #     "world_shards" : world_shards,
                #     "gbuf_views" : gbuf_views,
                # })

1242
1243
1244
1245
        # pax(0, {"gbuf_view_items": gbuf_view_items})

        return gbuf_view_items

1246
    def reduce_grads(self, model):
1247

1248
1249
1250
1251
        # >>>
        timers = get_timers()
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
1252
1253
1254
1255
1256
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync word embedding params.

        # ... todo ...

1257
1258
1259
1260
1261
1262
1263
        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
1264
            # >>>
1265
            raise Exception("[fix] ready for weight sync?")
1266
            # <<<
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
1282
                    raise Exception("only 'main_grad' supported for distrib-opt.")
1283
1284
1285
1286
1287
1288
1289
1290
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
                # +++
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
                # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
1291
1292
1293
1294
1295
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync T5 position embedding params.

        # ... todo ...

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            # >>>
            raise Exception("[fix] ready for t5 sync?")
            # <<<
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
            # +++
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
            # <<<
        timers('backward-embedding-all-reduce').stop()

1321
1322
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Reduce-scatter.
1323
1324
        # timers('backward-params-reduce-scatter').start()
        timers('backward-params-all-reduce').start()
Lawrence McAfee's avatar
Lawrence McAfee committed
1325
        data_parallel_rank = mpu.get_data_parallel_rank()
1326
        data_parallel_world_size = mpu.get_data_parallel_world_size()
Lawrence McAfee's avatar
Lawrence McAfee committed
1327
        data_parallel_group = mpu.get_data_parallel_group()
1328

1329
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
Lawrence McAfee's avatar
Lawrence McAfee committed
1330

1331
        # pax(0, {"gbuf_views": [g for item in gbuf_view_items for g in item[2]]})
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
        # pax(0, {"gbufs": [
        #     g.data
        #     for m in self.models
        #     for g in m._grad_buffers.values()
        # ]})

        # >>>
        # buffer_.data /= mpu.get_data_parallel_world_size()
        # torch.distributed.all_reduce(
        #     buffer_.data, group=mpu.get_data_parallel_group())
        # <<<
1343

1344
1345
1346
1347
1348
        # >>>
        # self.debug_main_param(0, "before reduce scatter")
        # self.debug_main_grad(0, "before reduce scatter")
        # <<<

1349
        for model_index, dtype, gbuf_views in gbuf_view_items:
1350
1351
            # coalesced /= mpu.get_data_parallel_world_size()
            gbuf = self.models[model_index]._grad_buffers[dtype].data
1352
1353
1354
1355
1356

            # >>>
            # ~~ distributed.py ~~
            # gbuf /= data_parallel_world_size
            # torch.distributed.all_reduce(gbuf, group=data_parallel_group)
1357
1358
1359
            # pax(0, {
            #     "gbuf" : tp(gbuf),
            # })
1360
1361
1362
1363
1364
1365
1366
            # <<<

            # torch.mul(gbuf.data, 1. / data_parallel_world_size, out = gbuf.data)
            # gbuf_views = [ t / data_parallel_world_size for t in gbuf_views ]
            gbuf /= data_parallel_world_size

            # if 1:
1367
1368
1369
1370
1371
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
1372
1373
1374
1375
1376
            # else:
            #     torch.distributed.all_reduce(
            #         gbuf,
            #         group = data_parallel_group,
            #     )
1377
1378
        # timers('backward-params-reduce-scatter').stop()
        timers('backward-params-all-reduce').stop()
1379
            
1380
        # pax(0, {"gbuf_views": [g for item in gbuf_view_items for g in item[2]]})
Lawrence McAfee's avatar
Lawrence McAfee committed
1381

1382
1383
1384
1385
1386
1387
1388
    def gather_params(self, ITERATION):

        # >>>
        timers = get_timers()
        # <<<

        timers('backward-params-all-gather').start()
Lawrence McAfee's avatar
Lawrence McAfee committed
1389

1390
1391
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
1392

1393
1394
        gbuf_view_items = self.get_model_grad_buffer_dp_views()

Lawrence McAfee's avatar
Lawrence McAfee committed
1395
        # All-gather updated main params.
1396
1397
1398
1399
1400
1401
1402
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )

1403
        # Each model param now contains its updated values in its
Lawrence McAfee's avatar
Lawrence McAfee committed
1404
        # '.main_grad' field.
1405
1406
1407
1408
1409
1410
1411
        # for param in self.param_gbuf_map: # ... incomplete param list.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()
1412

1413
        # pax(0, {"gbuf_view_items": gbuf_view_items})
1414

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
        # >>>
        # self.debug_main(ITERATION, "after/inside gather_params.", 0)
        # self.debug_model(ITERATION, "after/inside gather_params.", 0)

        # if ITERATION == 2:
        #     pax(1, {
        #         "ITERATION" : ITERATION,
        #         # "gbufs" : [
        #         #     tp(b.data)
        #         #     for m in self.models
        #         #     for b in m._grad_buffers.values()
        #         # ],
        #         "param_gbuf_map" : [ str(tuple(p.shape)) for p in self.param_gbuf_map ],
        #     })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
1431
    def _collect_main_grad_data_for_unscaling(self):
1432
        return [ g.data for g in self.get_main_grads() ]
Lawrence McAfee's avatar
Lawrence McAfee committed
1433

1434
1435
1436
    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
1437
            main_param = self.get_main_param(group_index)
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
1449
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]
1450

1451
                main_view.detach().copy_(model_view)
1452

1453

1454
1455
    def _copy_model_grads_to_main_grads(self, ITERATION):

Lawrence McAfee's avatar
Lawrence McAfee committed
1456
        for group_index, group_shard in enumerate(self.opt_group_shards):
1457
            for model_param, main_shard in group_shard["param_map"].items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1458

1459
                # Model shard.
1460
                model_index, dtype = self.param_gbuf_map[model_param]
Lawrence McAfee's avatar
Lawrence McAfee committed
1461
                model_shard = self.model_gbuf_shards \
1462
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
Lawrence McAfee's avatar
Lawrence McAfee committed
1463
1464
1465

                assert main_shard.size == model_shard.size

1466
1467
1468
1469
1470
1471
1472
                # pax(0, {
                #     "model_param" : tp(model_param),
                #     "main_shard" : str(main_shard),
                #     "param shard" : self.model_gbuf_shards \
                #     [model_index][dtype]["param_map"][model_param],
                # })

Lawrence McAfee's avatar
Lawrence McAfee committed
1473
                # Copy from DDP's contiguous buffer to main shard's grad.
1474
                model_grad = self.models[model_index]._grad_buffers[dtype].data
1475
                main_grad = self.get_main_grad(group_index)
Lawrence McAfee's avatar
Lawrence McAfee committed
1476

Lawrence McAfee's avatar
Lawrence McAfee committed
1477
                # Copy sub-range within tensor.
1478
1479
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]
Lawrence McAfee's avatar
Lawrence McAfee committed
1480

1481
                main_view.detach().copy_(model_view)
Lawrence McAfee's avatar
Lawrence McAfee committed
1482
1483
1484
1485

                # pax(0, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
1486
                #     # "param" : tp(param),
Lawrence McAfee's avatar
Lawrence McAfee committed
1487
                #     "model_index" : model_index,
1488
1489
1490
1491
1492
                #     "dtype" : str(dtype),
                #     "model_grad" : tp(model_grad),
                #     "main_grad" : tp(main_grad),
                #     "model_view" : tp(model_view),
                #     "main_view" : tp(main_view),
Lawrence McAfee's avatar
Lawrence McAfee committed
1493
1494
1495
1496
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

Lawrence McAfee's avatar
Lawrence McAfee committed
1497
        # >>>
1498
        # if 1 or ITERATION == DEBUG_ITERATION:
1499
1500
1501
1502
1503
        #     pax(0, {
        #         "** branch **" : "** fix. **",
        #         "ITERATION" : ITERATION,
        #         # "model grads" : self.get_world_model_grads(),
        #         "main_grads" : self.get_main_grads(),
1504
1505
1506
1507
1508
        #         "group shards" : [
        #             "group %d; %s" % (grp_idx, main_shard)
        #             for grp_idx, grp_shard in enumerate(self.opt_group_shards)
        #             for model_param, main_shard in grp_shard["param_map"].items()
        #         ],
1509
        #     })
Lawrence McAfee's avatar
Lawrence McAfee committed
1510
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
1511

1512

1513
    def _copy_main_params_to_model_params(self, ITERATION):
1514
1515

        for group_index, group_shard in enumerate(self.opt_group_shards):
1516
            for model_param, main_shard in group_shard["param_map"].items():
1517

1518
                model_index, dtype = self.param_gbuf_map[model_param]
1519
                model_shard = self.model_gbuf_shards \
1520
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
1521
1522
1523
1524

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
1525
                model_param = self.models[model_index]._grad_buffers[dtype].data
1526
                main_param = self.get_main_param(group_index)
1527
1528

                # Copy sub-range within tensor.
1529
1530
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]
1531
1532
1533
1534

                model_view.detach().copy_(main_view)

                # Debug.
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
                # pax(1, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "model_param" : tp(model_param),
                #     "model_index" : model_index,
                #     "dtype" : str(dtype),
                #     "model_param" : tp(model_param),
                #     "main_param" : tp(main_param),
                #     "model_view" : tp(model_view),
                #     "main_view" : tp(main_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })
1548

Lawrence McAfee's avatar
Lawrence McAfee committed
1549
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
1550
1551
1552
1553
1554
1555
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** fix. **",
        #         "ITERATION" : ITERATION,
        #         "model params" : self.get_world_model_params(),
        #     })
Lawrence McAfee's avatar
Lawrence McAfee committed
1556
        # <<<
1557

1558
1559
# <<<

mohammad's avatar
mohammad committed
1560

mohammad's avatar
mohammad committed
1561
1562
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1563
1564
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
1565
                 params_have_main_grad,
1566
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1567
1568
1569

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
1570
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
1589
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
1590

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1591
1592
1593
1594
1595
1596
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

1597
1598
1599
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
1600
                    if not self.use_contiguous_buffers_in_local_ddp:
1601
1602
                        param.main_grad = None

mohammad's avatar
mohammad committed
1603
        # Clip gradients.
1604
        grad_norm = None
mohammad's avatar
mohammad committed
1605
        if self.clip_grad > 0.0:
1606
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
1607

Rewon Child's avatar
Rewon Child committed
1608
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1609
1610
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
1611

mohammad's avatar
mohammad committed
1612
1613
1614
1615
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
1616
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
1617
1618


1619
1620
1621
1622
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
1623
1624
1625
1626
1627
1628
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)