optimizer.py 48.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
34
# >>>
from lutil import pax, tp
# <<<
mohammad's avatar
mohammad committed
35

Lawrence McAfee's avatar
Lawrence McAfee committed
36

mohammad's avatar
mohammad committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


52
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
53
54
55
56
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
57
58
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
59
60
61
62
63
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
64
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
65
66
67
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

68

mohammad's avatar
mohammad committed
69
70
71

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
72
73
74

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
75
                 params_have_main_grad,
76
                 use_contiguous_buffers_in_local_ddp):
77

mohammad's avatar
mohammad committed
78
79
80
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
81
82
83
84
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
85
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
86

87
        if self.use_contiguous_buffers_in_local_ddp:
88
89
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
90

Rewon Child's avatar
Rewon Child committed
91
    def get_parameters(self):
92
93
94
95
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
96
97
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
98

Rewon Child's avatar
Rewon Child committed
99
100
    def clip_grad_norm(self, clip_grad):
        params = self.get_parameters()
Lawrence McAfee's avatar
Lawrence McAfee committed
101
102
103
104
105
106
107
        # >>>
        # pax(0, {
        #     "clip_grad" : clip_grad,
        #     "params": [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ p.grad for p in params ],
        # })
        # <<<
108
        return clip_grad_norm_fp32(params, clip_grad)
109

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
110

Rewon Child's avatar
Rewon Child committed
111
112
113
114
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
115

mohammad's avatar
mohammad committed
116
117
118
119
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
120

mohammad's avatar
mohammad committed
121
122
    @abstractmethod
    def get_loss_scale(self):
123
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
124
125
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
126

mohammad's avatar
mohammad committed
127
128
129
130
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
131

Lawrence McAfee's avatar
Lawrence McAfee committed
132
133
134
135
136
    @abstractmethod
    def reduce_gradients(self):
        pass


mohammad's avatar
mohammad committed
137
138
139
140
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141

Lawrence McAfee's avatar
Lawrence McAfee committed
142
143
144
145
146
    @abstractmethod
    def gather_params(self):
        pass


147
148
    @abstractmethod
    def reload_model_params(self):
149
150
151
152
153
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
154
155
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
156

mohammad's avatar
mohammad committed
157
158
159
160
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161

mohammad's avatar
mohammad committed
162
163
164
165
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
166

mohammad's avatar
mohammad committed
167
168
169
170
171
172
173
174
175
176
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
177

mohammad's avatar
mohammad committed
178
179
180
181
182
183
184
185
186
187
188
189
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


Lawrence McAfee's avatar
Lawrence McAfee committed
190
class BaseFloat16Optimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
191
192

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
193
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
194
195
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
196

Lawrence McAfee's avatar
Lawrence McAfee committed
197
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
198
            optimizer, clip_grad, log_num_zeros_in_grad,
199
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
200

201
202
203
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
204
        self.bf16 = bf16
mohammad's avatar
mohammad committed
205
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
206
207
208
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
209
210
211

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
212
213
214
215
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
216
217

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
218
219
220
221
222
223
224
225
226
227
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
228

Lawrence McAfee's avatar
Lawrence McAfee committed
229
230
231
232
233
234
235

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
236
237
238
239
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


Lawrence McAfee's avatar
Lawrence McAfee committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    def _unscale_main_grads_and_check_for_nan(self):

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        # raise Exception("hi.")

        return found_inf_flag


    @torch.no_grad()
    def step(self):

        timers = get_timers()

        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
        self._copy_model_grads_to_main_grads()
        timers('optimizer-copy-to-main-grad').stop()

Lawrence McAfee's avatar
Lawrence McAfee committed
276
277
278
279
280
        # pax(0, {
        #     "params" : self.get_parameters(), # self.main_param_shards,
        #     "grads" : [ p.grad for p in self.get_parameters() ], # self.main_param_shards ],
        # })

Lawrence McAfee's avatar
Lawrence McAfee committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
296
                # pax(0, {"found_inf_flag": found_inf_flag})
Lawrence McAfee's avatar
Lawrence McAfee committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
            grad_norm = self.clip_grad_norm(self.clip_grad)
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

        # Step the optimizer.
        self.optimizer.step()

        # >>>
        # pax(0, {
Lawrence McAfee's avatar
Lawrence McAfee committed
315
316
317
318
319
320
321
322
323
        #     # "optimizer / state" :
        #     # { hash(k):tp(v) for k,v in self.optimizer.state.items() },
        #     # "optimizer / state / len" : len(self.optimizer.state),
        #     # "optimizer / state / 0" : list(self.optimizer.state.values())[0],
        #     **{"optimizer / state / %s" % hash(k) : tp(v) for k, v in self.optimizer.state.items() },
        #     "params" : sum(
        #         s["exp_avg"].numel()
        #         for s in self.optimizer.state.values()
        #     ),
Lawrence McAfee's avatar
Lawrence McAfee committed
324
325
326
327
328
329
330
331
332
333
334
335
        # })
        # <<<

        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
        self._copy_main_params_to_model_params()
        timers('optimizer-copy-main-to-model-params').stop()

        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
364
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
365
366
367
368

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
369
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
370

mohammad's avatar
mohammad committed
371
        # ======================
372
        # main parameter stuff
mohammad's avatar
mohammad committed
373
374
375
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
376
377
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
378
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
379
380
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
381
382
383
384
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
385
            float16_params_this_group = []
mohammad's avatar
mohammad committed
386
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
387
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
388
389
390
391
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
392
393
394
395
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
396
                        # Create a copy
397
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
398
                        # Copy tensor model parallel attributes.
399
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
400
                                                                  param)
401
                        if hasattr(param, 'shared'):
402
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
403
                        # Replace the optimizer params with the new fp32 copy.
404
                        param_group['params'][i] = main_param
405

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
406
                        fp32_from_float16_params_this_group.append(main_param)
407
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
408
                        if param in self.optimizer.state:
409
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
410
411
412
413
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
414
415
416
                        # >>>
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
417
418
419
420
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
421
422
423
424
425
426
427
428
429
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
430
431
432
433
434
435
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

Lawrence McAfee's avatar
Lawrence McAfee committed
436
437
438
439
440
441
442
443
444
445
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # params = self.get_parameters()
        # pax(0, {
        #     # "params / 0" : params[0],
        #     "params" : [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ (param_is_not_tensor_parallel_duplicate(p.grad), tp(p.grad)) for p in params ],
        # })
        # <<<

mohammad's avatar
mohammad committed
446
447
448

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
449
450
451
452
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
453
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
454
            _zero_grad_group_helper(group, set_to_none)
455
456
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
457
458
459
460
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


461
    # >>>
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    def reduce_gradients(self, model):

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

        # >>>
        # if not args.use_distributed_optimizer:

        # All-reduce if needed.
        # >>>
        # if args.DDP_impl == 'local' and not args.use_distributed_optimizer:
        if args.DDP_impl == 'local':
        # <<<
            timers('backward-params-all-reduce').start()
            for model_module in model:
                # >>>
                # from lutil import pax, tp
                # pax(0, {
                #     "model" : model,
                #     "model_module" : model_module,
                # })
                # <<<
                # >>>
                # e.g., grad_shard = optimizer.get_grad_shard()
                # <<<
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
519
520
521
522
523
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
524
                # +++
525
526
527
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
528
529
530
531
532
533
534
535
536
537
538
539
540
541
                # <<<

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
542
543
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
544
            # +++
545
546
547
548
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
549
550
551
            # <<<
        timers('backward-embedding-all-reduce').stop()

Lawrence McAfee's avatar
Lawrence McAfee committed
552
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
553
        pass
Lawrence McAfee's avatar
Lawrence McAfee committed
554

555
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
556
557
558
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
559
            for model_param, main_param in zip(model_group, main_group):
560
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
561
562
563
564
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
565
566
567
568
569

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
570
                if self.params_have_main_grad and \
571
                   not self.use_contiguous_buffers_in_local_ddp:
572
573
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
574
575
576
577
578
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
579

580
581
582
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
583
                    if not self.use_contiguous_buffers_in_local_ddp:
584
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
585

Lawrence McAfee's avatar
Lawrence McAfee committed
586
587
    def _collect_main_grad_data_for_unscaling(self):

588
        main_grads = []
Lawrence McAfee's avatar
Lawrence McAfee committed
589
590

        # fp32 params from float16 ones.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
591
        for main_group in self.fp32_from_float16_groups:
592
593
594
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
595
596
597

        # pax(1, {"main_grads": main_grads})

mohammad's avatar
mohammad committed
598
        # Append fp32 parameters.
599
600
601
602
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
603
604
605
606
607
        
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # pax(1, {"main_grads": [ (param_is_not_tensor_parallel_duplicate(t), tp(t)) for t in main_grads ]})
        # <<<
mohammad's avatar
mohammad committed
608

Lawrence McAfee's avatar
Lawrence McAfee committed
609
        return main_grads
mohammad's avatar
mohammad committed
610
611


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
612
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
613
        model_data = []
614
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
615
616
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
617
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
618
                model_data.append(model_param.data)
619
620
                main_data.append(main_param.data)
        return model_data, main_data
621
622


623
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
624
625
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
626
627
628
629
630
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631
632
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
633
634
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
635
636


mohammad's avatar
mohammad committed
637
638
639
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
640
641
642
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
643
644
645
646
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
647
648
649
650
651
652
653
654
655
656
657
658
659
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
660
661
662
663
664
665
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
666

667
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
668
669
670
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
671
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
672
673
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
674
675
676
677
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


678
# >>>
679
import math
680

681
from megatron import get_args
682

Lawrence McAfee's avatar
Lawrence McAfee committed
683
684
685
686
687
688
689
690
691
692
693
# class ShardIndex:
class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)

694
# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
Lawrence McAfee's avatar
Lawrence McAfee committed
695
696
# class Float16DistributedOptimizer(MegatronOptimizer):
class Float16DistributedOptimizer(BaseFloat16Optimizer):
697

698
    # >>>
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
    # @classmethod
    # def test_reduce_scatter(cls):

    #     torch.manual_seed(mpu.get_data_parallel_rank())
    #     size = (20,)
    #     dtype = torch.float
    #     device = torch.cuda.current_device()
    #     data_parallel_world_size = mpu.get_data_parallel_world_size()
    #     data_parallel_group = mpu.get_data_parallel_group()

    #     input_list = [
    #         # torch.randn(size, dtype = dtype, device = device)
    #         5 * torch.randint(low = 1, high = 3, size = size, dtype = dtype, device = device)
    #         for _ in range(data_parallel_world_size)
    #     ]
    #     output = torch.empty(size, dtype = dtype, device = device)

    #     torch.distributed.reduce_scatter(
    #         output,
    #         input_list,
    #         group = data_parallel_group,
    #     )

    #     if torch.distributed.get_rank() == 0:
    #         print(output)
    #     pax(0, {
    #         "data_parallel_world_size" : data_parallel_world_size,
    #         "data_parallel_group" : data_parallel_group,
    #         "input_list" : input_list,
    #         "output" : tp(output),
    #     })
730
731
    # <<<

732
    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
733
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):
734

Lawrence McAfee's avatar
Lawrence McAfee committed
735
736
        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
737
        param_shard_map = {}
Lawrence McAfee's avatar
Lawrence McAfee committed
738
        for param, param_world_indexes in param_world_index_map.items():
739

Lawrence McAfee's avatar
Lawrence McAfee committed
740
741
742
            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
743
                0,
Lawrence McAfee's avatar
Lawrence McAfee committed
744
745
746
747
748
749
750
751
752
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
                param_world_shard = param_local_shard.normalize(param_world_start)
753
754
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
Lawrence McAfee's avatar
Lawrence McAfee committed
755
                param_shard_map[param] = {
756
757
758
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
759
                }
760
                # >>>
761
762
                # if param_world_start < gbuf_world_shard.start:
                #     pax({"param shards": param_shard_map[param]})
763
                # <<<
764

Lawrence McAfee's avatar
Lawrence McAfee committed
765
        # pax(0, {"param_shard_map": [ str((str(p.shape), s)) for p,s in param_shard_map.items() ]})
766
767
768
769

        return param_shard_map

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
770
    def get_model_gbuf_shard(cls, model, dtype):
771

Lawrence McAfee's avatar
Lawrence McAfee committed
772
773
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
774
775

        # Grad buffer shard.
Lawrence McAfee's avatar
Lawrence McAfee committed
776
777
778
779
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

780
781
782
783
784
785
786
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
Lawrence McAfee's avatar
Lawrence McAfee committed
787
788
789
790
791
792
793
794
795
796
797
        gbuf_local_shard = gbuf_world_shard.normalize()

        # Param shards.
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
798
            "world_all" : gbuf_world_all_shards,
Lawrence McAfee's avatar
Lawrence McAfee committed
799
            "param_map" : param_shard_map,
800
801
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
802
        # pax(0, {"data": data})
803

Lawrence McAfee's avatar
Lawrence McAfee committed
804
        return data
805
806

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
807
    def get_model_gbuf_shard_map(cls, model):
808
        return {
Lawrence McAfee's avatar
Lawrence McAfee committed
809
            dtype : cls.get_model_gbuf_shard(model, dtype)
810
811
812
            for dtype in model._grad_buffers
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
813
814
    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
815

Lawrence McAfee's avatar
Lawrence McAfee committed
816
817
818
819
820
821
822
823
824
825
826
827
828
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    # assert param not in param_size_map
                    # param_size_map[param] = param_shard_map["local"].size
                    param_gbuf_map[param] = (model_index, dtype)
                    # pax(0, {
                    #     "dtype" : dtype,
                    #     "gbuf_shard_map" : gbuf_shard_map,
                    #     "param" : tp(param),
                    #     "param_shard_map" : param_shard_map,
                    # })
829

Lawrence McAfee's avatar
Lawrence McAfee committed
830
831
832
833
834
835
        # pax(0, {
        #     "model_gbuf_shards" : model_gbuf_shards,
        #     # "param_size_map" :
        #     # [ (str(p.shape), s) for p, s in param_size_map.items() ],
        #     "param_gbuf_map" : param_gbuf_map,
        # })
836

Lawrence McAfee's avatar
Lawrence McAfee committed
837
        return param_gbuf_map
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
859
                    param_size = gbuf_shard_map["param_map"][param]["param"].size
860
861
862
863
864
865
866
867

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

868
869
870
871
872
873
874
875
876
877
                    # >>>
                    # if torch.distributed.get_rank() == 1:
                    #     print(">>> [%d] ... group %d, size %d, param %s. <<<" % (
                    #         torch.distributed.get_rank(),
                    #         group_index,
                    #         param_size,
                    #         str(tuple(param.shape)),
                    #     ))
                    # <<<

878
879
880
881
882
883
        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        # pax(0, {
884
885
886
887
888
889
        #     "param_group_map": [
        #         (g, str(p.shape))
        #         for p, g in param_group_map.items()
        #     ],
        #     "group_shards" : group_shards,
        # })
890
891
892

        return group_shards

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

        # Allocate main param/grad shard.
        # ** torch.nn.Parameter ??
        # ** MemoryBuffer ??
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
        
        # main_param_shards = []
        for group_index, group_shard in enumerate(opt_group_shards):

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # ** todo: for dtype in model_main_dtypes ........ **

            # Allocate shard.
            # if group_size == 0:
            #     main_param = None
            # else:
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

            # main_param_shards.append(main_param)
            group_shard["orig_group"]["params"] = [ main_param ]

            # # Update optimizer group.
            # self.optimizer.param_groups[group_index]["params"] = [ main_param ]

        # pax(1, {
        #     "opt_group_shards" : opt_group_shards,
        #     "main_param_shards" : main_param_shards,
        # })

        # return main_param_shards

934
935
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
936
                 bf16, grad_scaler, models):
937
938
939

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
Lawrence McAfee's avatar
Lawrence McAfee committed
940
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
941
            bf16, grad_scaler, models)
942

943
944
        # >>>
        args = get_args()
945
        assert args.use_contiguous_buffers_in_local_ddp # already checked in args
946
        # <<<
947

Lawrence McAfee's avatar
Lawrence McAfee committed
948
949
950
951
        # # Data parallel info.
        # self.data_parallel_group = mpu.get_data_parallel_group()
        # self.data_parallel_rank = mpu.get_data_parallel_rank()
        # self.data_parallel_world_size = mpu.get_data_parallel_world_size()
952

953
954
955
956
        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
Lawrence McAfee's avatar
Lawrence McAfee committed
957
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)
958

959
960
        # pax(0, {"param_gbuf_map": [ (str(tuple(p.shape)), d) for p, d in self.param_gbuf_map.items() ]})

961
962
963
964
965
        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

966
        # pax(0, {**{"opt_group_shards / %d" % i : g for i, g in enumerate(self.opt_group_shards)}})
Lawrence McAfee's avatar
Lawrence McAfee committed
967

968
969
970
971
        # Allocate main param shards.
        # self.main_param_shards = \
        #     self.allocate_main_param_shards(self.opt_group_shards)
        self.allocate_main_param_shards(self.opt_group_shards)
972

973
        # >>>
974
975
976
977
978
        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        #     "main_param_shards" : self.main_param_shards,
        # })
979
980
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
981
982
983
        # Initialize main params.
        self._copy_model_params_to_main_params()

984
985
986
987
988
        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
Lawrence McAfee's avatar
Lawrence McAfee committed
989
990
        self.optimizer.load_state_dict(self.optimizer.state_dict())

991

992
993
994
995
996
997
    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")
Lawrence McAfee's avatar
Lawrence McAfee committed
998
999
1000

    def zero_grad(self, set_to_none=True):

Lawrence McAfee's avatar
Lawrence McAfee committed
1001
        model_params = []
Lawrence McAfee's avatar
Lawrence McAfee committed
1002
1003
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1004
1005
1006
1007
                model_params.extend(param_map.keys())
        # main_params = []
        # for main_group in self.optimizer.param_groups:
        #     main_params.extend(main_group["params"])
Lawrence McAfee's avatar
Lawrence McAfee committed
1008

Lawrence McAfee's avatar
Lawrence McAfee committed
1009
1010
        _zero_grad_group_helper(model_params, set_to_none)
        # _zero_grad_group_helper(params, set_to_none = False)
Lawrence McAfee's avatar
Lawrence McAfee committed
1011

Lawrence McAfee's avatar
Lawrence McAfee committed
1012
        # pax(0, {"params": params})
1013

1014
1015
    def get_model_grad_buffer_dp_views(self):

Lawrence McAfee's avatar
Lawrence McAfee committed
1016
        # >>>
1017
1018
1019
        # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
        args = get_args()
        assert args.use_contiguous_buffers_in_local_ddp
Lawrence McAfee's avatar
Lawrence McAfee committed
1020
        # <<<
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf_shard in self.model_gbuf_shards[model_index].items():
                world_shards = gbuf_shard["world_all"]

                gbuf = model._grad_buffers[dtype]
                gbuf_views = []
                for shard in world_shards:
                    gbuf_views.append(gbuf.data[shard.start:shard.end])

                gbuf_view_items.append((model_index, dtype, gbuf_views))

        # pax(0, {"gbuf_view_items": gbuf_view_items})

        return gbuf_view_items

1039
    def reduce_gradients(self, model):
1040

Lawrence McAfee's avatar
Lawrence McAfee committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync word embedding params.

        # ... todo ...

        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync T5 position embedding params.

        # ... todo ...

1051
1052
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Reduce-scatter.
Lawrence McAfee's avatar
Lawrence McAfee committed
1053
1054
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
1055

1056
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
Lawrence McAfee's avatar
Lawrence McAfee committed
1057

1058
1059
1060
1061
1062
1063
1064
1065
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
            
        # pax(0, {"gbuf_view_items": gbuf_view_items})
Lawrence McAfee's avatar
Lawrence McAfee committed
1066

1067
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
1068

1069
1070
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
1071

1072
1073
        gbuf_view_items = self.get_model_grad_buffer_dp_views()

Lawrence McAfee's avatar
Lawrence McAfee committed
1074
        # All-gather updated main params.
1075
1076
1077
1078
1079
1080
1081
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )

Lawrence McAfee's avatar
Lawrence McAfee committed
1082
1083
        # Each model param now contains its updated values in it's
        # '.main_grad' field.
1084
1085
1086
1087
1088
1089
1090
        for param in self.param_gbuf_map:
            param.detach().copy_(param.main_grad)
            # pax(0, {
            #     "param" : tp(param),
            #     "main_grad" : tp(param.main_grad),
            #     # "grad" : tp(param.grad),
            # })
1091

1092
1093
1094
1095
1096
1097
1098
        # pax(0, {
        #     "gbuf_view_items" : gbuf_view_items,
        #     "param_gbuf_map" : [
        #         (str(tuple(p.shape)), d)
        #         for p, d in self.param_gbuf_map.items()
        #     ],
        # })
1099

Lawrence McAfee's avatar
Lawrence McAfee committed
1100
1101
    def _collect_main_grad_data_for_unscaling(self):
        return [ p.grad.data for p in self.main_param_shards ]
1102
        # return [ p.grad.data for p in self.main_param_shards if p is not None ]
Lawrence McAfee's avatar
Lawrence McAfee committed
1103

1104
1105
1106
    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
1107
1108
1109
            # main_param = self.main_param_shards[group_index]
            main_param = self.optimizer.param_groups[group_index]["params"][0]
            pax(0, {"main_param": tp(main_param)})
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
1121
1122
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]
                # try:
1123
                main_view.detach().copy_(model_view)
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
                # except:
                #     pax({
                #         "main_param" : tp(main_param),
                #         "model_param" : tp(model_param),
                #         "main_view" : tp(main_view),
                #         "model_view" : tp(model_view),
                #         "main_shard" : str(main_shard),
                #         "model_shard" : str(model_shard),
                #     })

1134
1135
1136
1137
1138
1139
1140
        # pax(1, {
        #     **{
        #         "opt_group_shards / %d" % i : s
        #         for i, s in enumerate(self.opt_group_shards)
        #     },
        #     "main_param_shards" : self.main_param_shards,
        # })
1141

Lawrence McAfee's avatar
Lawrence McAfee committed
1142
1143
1144
    def _copy_model_grads_to_main_grads(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
1145
            for model_param, main_shard in group_shard["param_map"].items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1146

1147
                model_index, dtype = self.param_gbuf_map[model_param]
Lawrence McAfee's avatar
Lawrence McAfee committed
1148
                model_shard = self.model_gbuf_shards \
1149
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
Lawrence McAfee's avatar
Lawrence McAfee committed
1150
1151
1152

                assert main_shard.size == model_shard.size

Lawrence McAfee's avatar
Lawrence McAfee committed
1153
                # Copy from DDP's contiguous buffer to main shard's grad.
1154
1155
                model_grad = self.models[model_index]._grad_buffers[dtype].data
                main_grad = self.main_param_shards[group_index].grad
Lawrence McAfee's avatar
Lawrence McAfee committed
1156

Lawrence McAfee's avatar
Lawrence McAfee committed
1157
                # Copy sub-range within tensor.
1158
1159
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]
Lawrence McAfee's avatar
Lawrence McAfee committed
1160

1161
                main_view.detach().copy_(model_view)
Lawrence McAfee's avatar
Lawrence McAfee committed
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

                # pax(0, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "param" : tp(param),
                #     "model_index" : model_index,
                #     "gbuf_dtype" : str(gbuf_dtype),
                #     "model_grad_tensor" : tp(model_grad_tensor),
                #     "main_grad_tensor" : tp(main_grad_tensor),
                #     "model_grad_view" : tp(model_grad_view),
                #     "main_grad_view" : tp(main_grad_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

Lawrence McAfee's avatar
Lawrence McAfee committed
1177
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
1178
1179
1180
1181
        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        # })
1182
1183
1184
1185
1186
1187
1188
1189
        # for param in self.main_param_shards:
        #     grad = param.grad
        #     is_nan = torch.any(torch.isnan(grad)).item()
        #     if is_nan:
        #         pax(0, {
        #             "grad" : tp(grad),
        #             "is_nan" : is_nan,
        #         })
Lawrence McAfee's avatar
Lawrence McAfee committed
1190
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
1191

1192
1193
1194
1195

    def _copy_main_params_to_model_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
1196
            for model_param, main_shard in group_shard["param_map"].items():
1197

1198
                model_index, dtype = self.param_gbuf_map[model_param]
1199
                model_shard = self.model_gbuf_shards \
1200
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
1201
1202
1203
1204

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
1205
1206
                model_param = self.models[model_index]._grad_buffers[dtype].data
                main_param = self.main_param_shards[group_index]
1207
1208

                # Copy sub-range within tensor.
1209
1210
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

                model_view.detach().copy_(main_view)

                # Debug.
                # pax(0, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "param" : tp(param),
                #     "model_index" : model_index,
                #     "gbuf_dtype" : str(gbuf_dtype),
                #     "model_grad_tensor" : tp(model_grad_tensor),
                #     "main_grad_tensor" : tp(main_grad_tensor),
                #     "model_grad_view" : tp(model_grad_view),
                #     "main_grad_view" : tp(main_grad_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        # })
Lawrence McAfee's avatar
Lawrence McAfee committed
1233
1234
1235
1236
        # >>>
        for param in self.param_gbuf_map:
            is_nan = torch.any(torch.isnan(param)).item()
            if is_nan:
1237
                pax({
Lawrence McAfee's avatar
Lawrence McAfee committed
1238
1239
1240
1241
                    "param" : tp(param),
                    "is_nan" : is_nan,
                })
        # <<<
1242

1243
1244
# <<<

mohammad's avatar
mohammad committed
1245

mohammad's avatar
mohammad committed
1246
1247
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1248
1249
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
1250
                 params_have_main_grad,
1251
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1252
1253
1254

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
1255
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
1274
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
1275

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1276
1277
1278
1279
1280
1281
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

1282
1283
1284
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
1285
                    if not self.use_contiguous_buffers_in_local_ddp:
1286
1287
                        param.main_grad = None

mohammad's avatar
mohammad committed
1288
        # Clip gradients.
1289
        grad_norm = None
mohammad's avatar
mohammad committed
1290
        if self.clip_grad > 0.0:
1291
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
1292

Rewon Child's avatar
Rewon Child committed
1293
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1294
1295
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
1296

mohammad's avatar
mohammad committed
1297
1298
1299
1300
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
1301
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
1302
1303


1304
1305
1306
1307
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
1308
1309
1310
1311
1312
1313
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)