optimizer.py 52.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
34
# >>>
from lutil import pax, tp
# <<<
mohammad's avatar
mohammad committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


51
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
52
53
54
55
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
56
57
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
58
59
60
61
62
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
63
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
64
65
66
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

67

mohammad's avatar
mohammad committed
68
69
70

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
71
72
73

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
74
                 params_have_main_grad,
75
                 use_contiguous_buffers_in_local_ddp):
76

mohammad's avatar
mohammad committed
77
78
79
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
80
81
82
83
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
84
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
85

86
        if self.use_contiguous_buffers_in_local_ddp:
87
88
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
89

Rewon Child's avatar
Rewon Child committed
90
    def get_parameters(self):
91
92
93
94
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
95
96
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
97

Rewon Child's avatar
Rewon Child committed
98
99
    def clip_grad_norm(self, clip_grad):
        params = self.get_parameters()
100
        return clip_grad_norm_fp32(params, clip_grad)
101

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
102

Rewon Child's avatar
Rewon Child committed
103
104
105
106
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
107

mohammad's avatar
mohammad committed
108
109
110
111
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
112

mohammad's avatar
mohammad committed
113
114
    @abstractmethod
    def get_loss_scale(self):
115
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
116
117
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118

mohammad's avatar
mohammad committed
119
120
121
122
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
123

Lawrence McAfee's avatar
Lawrence McAfee committed
124
125
126
127
128
    @abstractmethod
    def reduce_gradients(self):
        pass


mohammad's avatar
mohammad committed
129
130
131
132
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
133

Lawrence McAfee's avatar
Lawrence McAfee committed
134
135
136
137
138
    @abstractmethod
    def gather_params(self):
        pass


139
140
    @abstractmethod
    def reload_model_params(self):
141
142
143
144
145
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
146
147
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
148

mohammad's avatar
mohammad committed
149
150
151
152
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
153

mohammad's avatar
mohammad committed
154
155
156
157
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
158

mohammad's avatar
mohammad committed
159
160
161
162
163
164
165
166
167
168
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
169

mohammad's avatar
mohammad committed
170
171
172
173
174
175
176
177
178
179
180
181
182
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)



Lawrence McAfee's avatar
Lawrence McAfee committed
183
class BaseFloat16Optimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
184
185

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
186
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
187
188
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
189

Lawrence McAfee's avatar
Lawrence McAfee committed
190
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
191
            optimizer, clip_grad, log_num_zeros_in_grad,
192
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
193

194
195
196
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
197
        self.bf16 = bf16
mohammad's avatar
mohammad committed
198
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
199
200
201
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
202
203
204

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
205
206
207
208
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
209
210

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
211
212
213
214
215
216
217
218
219
220
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
221

Lawrence McAfee's avatar
Lawrence McAfee committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 bf16, grad_scaler):

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            bf16, grad_scaler)

mohammad's avatar
mohammad committed
264
        # ======================
265
        # main parameter stuff
mohammad's avatar
mohammad committed
266
267
268
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
269
270
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
271
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
272
273
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
274
275
276
277
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
278
            float16_params_this_group = []
mohammad's avatar
mohammad committed
279
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
280
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
281
282
283
284
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
286
287
288
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
289
                        # Create a copy
290
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
291
                        # Copy tensor model parallel attributes.
292
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
293
                                                                  param)
294
                        if hasattr(param, 'shared'):
295
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
296
                        # Replace the optimizer params with the new fp32 copy.
297
                        param_group['params'][i] = main_param
Lawrence McAfee's avatar
Lawrence McAfee committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
                        # >>>
                        def debug():
                            from lutil import pax, tp
                            pax(0, {
                                "optimizer" : optimizer,
                                # "optimizer / state" : optimizer.state,
                                "optimizer / pg / 0" : optimizer.param_groups[0]["params"],
                                "optimizer / pg / 1" : optimizer.param_groups[1]["params"],
                                "param" : tp(param),
                                "param / hash" : hash(param),
                                "main_param" : tp(main_param),
                                "main_param / hash" : hash(main_param),
                            })
                        # <<<
                        # >>>
                        # debug()
314
315
316
317
318
319

                        # from lutil import pax, tp
                        # pax(0, {
                        #     "param" : tp(param),
                        #     "main_param" : tp(main_param),
                        # })
Lawrence McAfee's avatar
Lawrence McAfee committed
320
                        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
321
                        fp32_from_float16_params_this_group.append(main_param)
322
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
323
                        if param in self.optimizer.state:
324
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
325
                                = self.optimizer.state.pop(param)
Lawrence McAfee's avatar
Lawrence McAfee committed
326
327
328
                        # >>>
                        # debug()
                        # <<<
mohammad's avatar
mohammad committed
329
330
331

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
332
333
334
335
                        # >>>
                        from lutil import pax
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
336
337
338
339
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
340
341
342
343
344
345
346
347
348
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
349
350
351
352
353
354
355
356
357
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
358
359
360
361
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
362
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
363
            _zero_grad_group_helper(group, set_to_none)
364
365
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
366
367
368
369
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


370
    # >>>
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    def reduce_gradients(self, model):

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

        # >>>
        # if not args.use_distributed_optimizer:

        # All-reduce if needed.
        # >>>
        # if args.DDP_impl == 'local' and not args.use_distributed_optimizer:
        if args.DDP_impl == 'local':
        # <<<
            timers('backward-params-all-reduce').start()
            for model_module in model:
                # >>>
                # from lutil import pax, tp
                # pax(0, {
                #     "model" : model,
                #     "model_module" : model_module,
                # })
                # <<<
                # >>>
                # e.g., grad_shard = optimizer.get_grad_shard()
                # <<<
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
428
429
430
431
432
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
433
                # +++
434
435
436
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
437
438
439
440
441
442
443
444
445
446
447
448
449
450
                # <<<

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
451
452
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
453
            # +++
454
455
456
457
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
458
459
460
            # <<<
        timers('backward-embedding-all-reduce').stop()

461
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
462
463
464
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
465
            for model_param, main_param in zip(model_group, main_group):
466
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
467
468
469
470
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
471
472
473
474
475

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
476
                if self.params_have_main_grad and \
477
                   not self.use_contiguous_buffers_in_local_ddp:
478
479
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
480
481
482
483
484
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
485

486
487
488
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
489
                    if not self.use_contiguous_buffers_in_local_ddp:
490
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
491

492
493
    def _unscale_main_grads_and_check_for_nan(self):
        main_grads = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
494
495
        # fp32 params fromm float16 ones.
        for main_group in self.fp32_from_float16_groups:
496
497
498
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
499
        # Append fp32 parameters.
500
501
502
503
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
504
505
506
507
        # Reset found inf.
        self.found_inf.fill_(0.0)
        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
508
            main_grads, self.found_inf, self.grad_scaler.inv_scale)
mohammad's avatar
mohammad committed
509
510
511
512
        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
mohammad's avatar
mohammad committed
513
514
515
516
517
518

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)
        return found_inf_flag


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
519
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
520
        model_data = []
521
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
522
523
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
524
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
525
                model_data.append(model_param.data)
526
527
                main_data.append(main_param.data)
        return model_data, main_data
528
529


530
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
531
532
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
533
534
535
536
537
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
538
539
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
540
541
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
542
543
544


    def reload_model_params(self):
545
        self._copy_model_params_to_main_params()
mohammad's avatar
mohammad committed
546

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
547

mohammad's avatar
mohammad committed
548
549
550
551
552
    @torch.no_grad()
    def step(self):

        timers = get_timers()

553
554
555
556
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
        self._copy_model_grads_to_main_grads()
        timers('optimizer-copy-to-main-grad').stop()
mohammad's avatar
mohammad committed
557

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
558
559
560
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:
mohammad's avatar
mohammad committed
561

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
562
563
564
565
            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()
mohammad's avatar
mohammad committed
566

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
567
568
569
570
571
572
573
            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None
mohammad's avatar
mohammad committed
574

575
576
        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
577
578
579
        grad_norm = None
        if self.clip_grad > 0.0:
            grad_norm = self.clip_grad_norm(self.clip_grad)
580
        timers('optimizer-clip-main-grad').stop()
mohammad's avatar
mohammad committed
581

Rewon Child's avatar
Rewon Child committed
582
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
583
584
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
585

mohammad's avatar
mohammad committed
586
587
588
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
589
590
591
592
593
594
595
596
597
598
        # >>>
        # from lutil import pax, tp
        # pax(0, {
        #     "optimizer / state" :
        #     { hash(k):tp(v) for k,v in self.optimizer.state.items() },
        #     "optimizer / state / len" : len(self.optimizer.state),
        #     "optimizer / state / 0" : list(self.optimizer.state.values())[0],
        # })
        # <<<

599
600
601
602
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
        self._copy_main_params_to_model_params()
        timers('optimizer-copy-main-to-model-params').stop()
mohammad's avatar
mohammad committed
603

mohammad's avatar
mohammad committed
604
        # Successful update.
605
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
606
607


mohammad's avatar
mohammad committed
608
609
610
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
611
612
613
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
614
615
616
617
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
618
619
620
621
622
623
624
625
626
627
628
629
630
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631
632
633
634
635
636
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
637

638
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
639
640
641
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
642
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
643
644
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
645
646
647
648
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


649
# >>>
650
import math
651

652
# from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
653

654
655
656
657
658
from megatron import get_args
# from megatron import get_timers
# from megatron.model import DistributedDataParallel as LocalDDP
# from megatron.model import Float16Module
# from megatron.utils import unwrap_model
659

660
661
662
# >>>
from lutil import pax, tp
# <<<
663

Lawrence McAfee's avatar
Lawrence McAfee committed
664
665
666
667
668
669
670
671
672
673
674
# class ShardIndex:
class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)

675
# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
Lawrence McAfee's avatar
Lawrence McAfee committed
676
677
# class Float16DistributedOptimizer(MegatronOptimizer):
class Float16DistributedOptimizer(BaseFloat16Optimizer):
678

679
680
681
682
683
684
685
686
    # >>>
    @classmethod
    def test_reduce_scatter(cls):

        torch.manual_seed(mpu.get_data_parallel_rank())
        size = (20,)
        dtype = torch.float
        device = torch.cuda.current_device()
687
        data_parallel_world_size = mpu.get_data_parallel_world_size()
688
689
690
691
692
693
694
695
696
697
698
699
700
        data_parallel_group = mpu.get_data_parallel_group()

        input_list = [
            # torch.randn(size, dtype = dtype, device = device)
            5 * torch.randint(low = 1, high = 3, size = size, dtype = dtype, device = device)
            for _ in range(data_parallel_world_size)
        ]
        output = torch.empty(size, dtype = dtype, device = device)

        torch.distributed.reduce_scatter(
            output,
            input_list,
            group = data_parallel_group,
701
702
        )

703
704
705
706
707
708
709
710
711
712
713
714
        if torch.distributed.get_rank() == 0:
            print(output)
        pax(0, {
            "data_parallel_world_size" : data_parallel_world_size,
            "data_parallel_group" : data_parallel_group,
            "input_list" : input_list,
            "output" : tp(output),
        })
    # <<<

    # def __init__(self, *_args):
    #     super().__init__(*_args)
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
    # def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
    #              params_have_main_grad, use_contiguous_buffers_in_local_ddp,
    #              bf16, grad_scaler):

    #     super().__init__(
    #         optimizer, clip_grad, log_num_zeros_in_grad,
    #         params_have_main_grad, use_contiguous_buffers_in_local_ddp,
    #         bf16, grad_scaler)

    #     # >>>
    #     # self.test_reduce_scatter()
    #     # <<<

    #     # >>>
    #     args = get_args()
    #     # <<<

    #     # Data parallel info.
    #     self.data_parallel_group = mpu.get_data_parallel_group()
    #     self.data_parallel_rank = mpu.get_data_parallel_rank()
    #     self.data_parallel_world_size = mpu.get_data_parallel_world_size()

    #     # Total trainable param count.
    #     # self.total_param_size = sum(
    #     #     p.numel()
    #     #     for g in self.param_groups
    #     #     for p in g["params"]
    #     #     # if p .requires_grad ???
    #     # )

    #     # Model params: group sizes, group offset maps.
    #     # self.model_params = []
    #     # self.model_param_group_sizes = []
    #     # self.model_param_group_offset_maps = []
    #     self.model_param_groups = []
    #     for param_group in self.optimizer.param_groups:
    #         param_group_offset = 0
    #         param_group_offset_map = {}
    #         for param in param_group['params']:
    #             if not param.requires_grad:
    #                 continue
    #             # self.model_params.append(param)
    #             param_group_offset_map[param] = {
    #                 "start" : param_group_offset,
    #                 "end" : param_group_offset + param.numel(),
    #             }
    #             param_group_offset += param.numel()
    #         # self.model_param_group_sizes.append(param_group_offset)
    #         # self.model_param_group_offset_maps.append(param_group_offset_map)
    #         self.model_param_groups.append({
    #             "size" : param_group_offset,
    #             "offset_map" : param_group_offset_map,
    #         })

    #     # pax(0, {
    #     #     "model_params" : model_params,
    #     #     "model_param_group_sizes" : model_param_group_sizes,
    #     #     "model_param_group_offset_maps" : model_param_group_offset_maps,
    #     # })

    #     # Shard allocator.
    #     # ** torch.nn.Parameter ??
    #     # ** MemoryBuffer ??
    #     allocate_shard = lambda shard_size, dtype : torch.empty(
    #         (shard_size,),
    #         dtype = dtype,
    #         device = torch.cuda.current_device(),
    #         requires_grad = True)

    #     # Allocate shards.
    #     # (Also, collect world DP shard info.)
    #     # model_main_dtypes = set([ args.params_dtype, torch.float ])
    #     model_main_dtypes = set([ torch.float ]) # fp32 only, for now
    #     # self.world_shard_info_groups = [] # world_group_shard_infos ?
    #     # self.main_param_shard_groups = []
    #     self.world_shard_infos = [{"groups": []} for _ in self.model_param_groups]
    #     for group_index, model_param_group in enumerate(self.model_param_groups):

    #         # Max world shard size.
    #         model_param_size = model_param_group["size"]
    #         max_world_shard_size = int(math.ceil(model_param_size /
    #                                              self.data_parallel_world_size))

    #         # DP world shard infos.
    #         # world_shard_infos = []
    #         for r in range(self.data_parallel_world_size):
    #             shard_start_index = r * max_world_shard_size
    #             shard_end_index = min(model_param_size,
    #                                   shard_start_index + max_world_shard_size)
    #             # world_shard_infos.append({
    #             self.world_shard_infos[r]["groups"].append({
    #                 "start" : shard_start_index,
    #                 "end" : shard_end_index,
    #                 "size" : shard_end_index - shard_start_index,
    #             })
    #         # self.world_shard_info_groups.append(world_shard_infos)
    #         # self.world_shard_infos[group_index].append(world_shard_infos)

    #         # DP local rank's shard info.
    #         # local_shard_info = world_shard_infos[self.data_parallel_rank]
    #         local_shard_info = \
    #             self.world_shard_infos[self.data_parallel_rank]["groups"][-1]
    #         local_shard_start_index = local_shard_info["start"]
    #         local_shard_end_index = local_shard_info["end"]
    #         local_shard_size = local_shard_info["size"]

    #         # Local shard's param 'slice' index map.
    #         local_shard_info["param_slice_index_map"] = {}
    #         for param, offset_dict in model_param_group["offset_map"].items():
    #             # param_start_index = offset_dict["start"]
    #             # param_end_index = offset_dict["end"]
    #             # param_shard_start_index = max(local_shard_start_index,
    #             #                               param_start_index)
    #             # param_shard_end_index = min(local_shard_end_index,
    #             #                             param_end_index)
    #             orig_start_index = offset_dict["start"]
    #             orig_end_index = offset_dict["end"]
    #             shard_start_index = max(
    #                 0,
    #                 orig_start_index - local_shard_start_index)
    #             shard_end_index = min(
    #                 local_shard_end_index,
    #                 orig_end_index - local_shard_start_index)

    #             # if param_shard_end_index > param_shard_start_index:
    #             #     # Indexes are relative to local shard start index.
    #             #     # local_shard_info["param_index_map"][param] = {
    #             #     #     "param" : (
    #             #     #         param_shard_start_index,
    #             #     #         param_shard_end_index,
    #             #     #     ),
    #             #     #     "shard" : (
    #             #     #         param_shard_start_index - local_shard_start_index,
    #             #     #         param_shard_end_index - local_shard_start_index,
    #             #     #     ),
    #             #     # }
    #             #     local_shard_info["param_slice_index_map"][param] = {
    #             #         "param_start" :
    #             #         param_shard_start_index,
    #             #         "shard_start" :
    #             #         param_shard_start_index - local_shard_start_index,
    #             #         "size":
    #             #         param_shard_end_index - param_shard_start_index,
    #             #     }
    #             if shard_end_index > shard_start_index:
    #                 local_shard_info["param_slice_index_map"][param] = {
    #                     "orig_start" : orig_start_index,
    #                     "shard_start" : shard_start_index,
    #                     "size" : shard_end_index - shard_start_index,
    #                 }

    #             # pax(0, {
    #             #     "local index" : "%d, %d" % (
    #             #         local_shard_start_index,
    #             #         local_shard_end_index,
    #             #     ),
    #             #     "param index" : "%s, %d" % (
    #             #         param_start_index,
    #             #         param_end_index,
    #             #     ),
    #             #     "param" : tp(param),
    #             #     "shard_param_index_map" : shard_param_index_map,
    #             #     "local_shard_info" : local_shard_info,
    #             # })

    #         # pax(2, {
    #         #     "data_parallel_rank" : self.data_parallel_rank,
    #         #     "local_shard_info" : local_shard_info,
    #         #     "param_index_map " : [
    #         #         (str(p.shape), i)
    #         #         for p, i in local_shard_info["param_index_map"].items()
    #         #     ],
    #         # })

    #         # Allocate shards.
    #         # (Non-fp32 shards are for convenience; e.g., intermediaries
    #         # between model params and main fp32 shard. Necessary???)
    #         # main_param_shards = {
    #         #     ty : allocate_shard(local_shard_size, ty)
    #         #     for ty in model_main_dtypes}
    #         main_param_shards = {}
    #         for dtype in model_main_dtypes:
    #             main_param = allocate_shard(local_shard_size, dtype)
    #             main_param.grad = allocate_shard(local_shard_size, dtype)
    #             # pax(0, {"main_param": main_param})
    #             main_param_shards[dtype] = main_param
    #         # self.main_param_shard_groups.append(main_param_shards)
    #         local_shard_info["data"] = main_param_shards

    #         # Update optimizer group.
    #         self.optimizer.param_groups[group_index]["params"] = \
    #             [ main_param_shards[torch.float] ]

    #         # pax(0, {
    #         #     "param_groups" : self.optimizer.param_groups,
    #         #     "params" : self.optimizer.param_groups[group_index]["params"],
    #         # })

    #     # Add world start/end indexes, for reduce/gather steps.
    #     offset = 0
    #     for r in self.world_shard_infos:
    #         r["start_index"] = offset
    #         offset += sum(g["size"] for g in r["groups"])
    #         r["end_index"] = offset

    #     # Leverage state_dict() and load_state_dict() to
    #     # recast preexisting per-param state tensors
    #     self.optimizer.load_state_dict(self.optimizer.state_dict())

    #     # >>>
    #     # pax(0, {
    #     #     "world_shard_infos" : self.world_shard_infos,
    #     #     **{
    #     #         "world_shard_infos / %d" % i : r
    #     #         for i, r in enumerate(self.world_shard_infos)
    #     #     },
    #     # })
    #     # <<<
    @classmethod
    # def get_ddp_gbuf_param_shards(cls, model, dtype, gbuf_start):
Lawrence McAfee's avatar
Lawrence McAfee committed
935
936
937
    # def get_ddp_gbuf_param_shard_map(cls, model, dtype, gbuf_start):
    # def get_model_gbuf_param_shard_index_map(cls,model,dtype,gbuf_world_index):
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):
938

Lawrence McAfee's avatar
Lawrence McAfee committed
939
940
        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
941
        param_shard_map = {}
Lawrence McAfee's avatar
Lawrence McAfee committed
942
        for param, param_world_indexes in param_world_index_map.items():
943

Lawrence McAfee's avatar
Lawrence McAfee committed
944
945
946
            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
947
                0,
Lawrence McAfee's avatar
Lawrence McAfee committed
948
949
950
951
952
953
954
955
956
957
958
959
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
                param_world_shard = param_local_shard.normalize(param_world_start)
                param_shard_map[param] = {
                    "local" : param_local_shard,
                    "world" : param_world_shard,
960
961
                }

Lawrence McAfee's avatar
Lawrence McAfee committed
962
        # pax(0, {"param_shard_map": [ str((str(p.shape), s)) for p,s in param_shard_map.items() ]})
963
964
965
966

        return param_shard_map

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
967
968
969
970
    # def get_ddp_gbuf_shard(cls, model, dtype):
    # def get_model_gbuf_shard(cls, model, dtype):
    # def get_model_gbuf_shard_index(cls, model, dtype):
    def get_model_gbuf_shard(cls, model, dtype):
971

Lawrence McAfee's avatar
Lawrence McAfee committed
972
973
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
974
975

        # Grad buffer shard.
Lawrence McAfee's avatar
Lawrence McAfee committed
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

        gbuf_world_start = data_parallel_rank * max_gbuf_shard_size
        gbuf_world_end = min(gbuf_size, gbuf_world_start + max_gbuf_shard_size)
        gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
        gbuf_local_shard = gbuf_world_shard.normalize()
        # gbuf_local_shard = Shard(0, gbuf_world_index.size)

        # Param shards.
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
            "param_map" : param_shard_map,
996
997
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
998
        # pax(0, {"data": data})
999

Lawrence McAfee's avatar
Lawrence McAfee committed
1000
        return data
1001
1002
1003

    @classmethod
    # def get_ddp_gbuf_shards(cls, model):
Lawrence McAfee's avatar
Lawrence McAfee committed
1004
1005
1006
1007
    # def get_ddp_gbuf_shard_map(cls, model):
    # def get_model_gbuf_shard_map(cls, model):
    # def get_model_gbuf_shard_index_map(cls, model):
    def get_model_gbuf_shard_map(cls, model):
1008

Lawrence McAfee's avatar
Lawrence McAfee committed
1009
        # shard_index_map = {
1010
        shard_map = {
Lawrence McAfee's avatar
Lawrence McAfee committed
1011
            dtype : cls.get_model_gbuf_shard(model, dtype)
1012
1013
1014
            for dtype in model._grad_buffers
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
1015
        # pax(0, {"shard_map": shard_map})
1016
1017
1018

        return shard_map

1019
1020
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
1021
                 bf16, grad_scaler, models):
1022
1023
1024

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
Lawrence McAfee's avatar
Lawrence McAfee committed
1025
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
1026
            bf16, grad_scaler, models)
1027

1028
1029
        # >>>
        args = get_args()
1030
        assert args.use_contiguous_buffers_in_local_ddp # already checked in args
1031
        # <<<
1032

1033
1034
        # pax(0, {"models": models})

Lawrence McAfee's avatar
Lawrence McAfee committed
1035
1036
1037
1038
        # # Data parallel info.
        # self.data_parallel_group = mpu.get_data_parallel_group()
        # self.data_parallel_rank = mpu.get_data_parallel_rank()
        # self.data_parallel_world_size = mpu.get_data_parallel_world_size()
1039

1040
1041
1042
1043
1044
1045
        # Param group map.
        self.param_group_map = {}
        for group_index, group in enumerate(self.optimizer.param_groups):
            for param in group["params"]:
                assert param.requires_grad
                self.param_group_map[param] = group_index
1046

1047
1048
1049
1050
        # pax(0, {"param_group_map": [
        #     (g, str(p.shape))
        #     for p, g in self.param_group_map.items()
        # ]})
1051
1052

        # Shard allocator.
1053
1054
        # ** torch.nn.Parameter ??
        # ** MemoryBuffer ??
Lawrence McAfee's avatar
Lawrence McAfee committed
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        # allocate_shard = lambda shard_size, dtype : torch.empty(
        #     (shard_size,),
        #     dtype = dtype,
        #     device = torch.cuda.current_device(),
        #     requires_grad = True)

        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))

        # Allocate main param/grad shard.
        param_shard_map = self.get_param_shard_map(self.model_gbuf_shards)

        pax(0, {
            "model_gbuf_shards" : self.model_gbuf_shards,
            "param_shard_map" : param_shard_map,
        })
1073

Lawrence McAfee's avatar
Lawrence McAfee committed
1074
1075
1076
1077
        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

1078
        # >>>
1079
1080
1081
        pax(0, {
            "world_shard_infos" : self.world_shard_infos,
        })
1082
1083
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
1084
1085
1086
1087
1088
    # def get_loss_scale(self):
    #     if self.grad_scaler is None:
    #         return self._scale_one
    #     return self.grad_scaler.scale

1089
1090
1091
1092
1093
1094
    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")
Lawrence McAfee's avatar
Lawrence McAfee committed
1095
1096
1097
1098
1099
1100
1101
1102
1103

    def zero_grad(self, set_to_none=True):

        params = []
        for model_param_group in self.model_param_groups:
            params.extend(model_param_group["offset_map"].keys())
        for main_group in self.optimizer.param_groups:
            params.extend(main_group["params"])

1104
1105
        # _zero_grad_group_helper(params, set_to_none)
        _zero_grad_group_helper(params, set_to_none = False)
Lawrence McAfee's avatar
Lawrence McAfee committed
1106
1107
1108
1109
1110

        # pax(0, {
        #     "model_param_groups" : self.model_param_groups,
        #     "params" : params,
        # })
1111

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    # def reduce_gradients(self, model):

    #     # >>>
    #     # pax(0, {"main param" : self.world_shard_info_groups[0][self.data_parallel_rank]["data"][torch.float]})
    #     # <<<

    #     # >>>
    #     args = get_args()
    #     # timers = get_timers()
    #     # <<<

    #     # >>> [ temporary requirement ... and already checked in arguments.py ]
    #     assert args.use_contiguous_buffers_in_local_ddp
    #     # <<<

    #     # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    #     # Map param to virtual model.
    #     # ** ideally, this should happen once, during construction.
    #     param_model_map = {}
    #     for vmodel in model:
    #         for dtype, param_index_map in \
    #             vmodel._grad_buffer_param_index_map.items():
    #             for param in param_index_map:
    #                 param_model_map[param] = {
    #                     "dtype" : dtype,
    #                     "model" : vmodel,
    #                 }

    #     # pax(0, {
    #     #     "param_model_map" : [
    #     #         (str(tuple(p.shape)), m)
    #     #         for p, m in param_model_map.items()
    #     #     ],
    #     # })

    #     # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    #     # Copy model grads to main shard.
    #     local_shard_info_groups = [g[self.data_parallel_rank]
    #                                for g in self.world_shard_info_groups]
    #     for group_index, local_shard_info in enumerate(local_shard_info_groups):
            
    #         # model_param_index_map = 
    #         # shard_param_index_map = local_shard_info["param_index_map"]
    #         # main_index_map = local_shard_info["param_index_map"]
    #         main_slice_index_map = local_shard_info["param_slice_index_map"]
    #         for param, main_slice_indexes in main_slice_index_map.items():

    #             main_slice_orig_start_index = main_slice_indexes["orig_start"]
    #             main_slice_shard_start_index = main_slice_indexes["shard_start"]
    #             main_slice_size = main_slice_indexes["size"]

    #             dtype_model_dict = param_model_map[param]
    #             dtype = dtype_model_dict["dtype"]
    #             vmodel = dtype_model_dict["model"]
    #             model_grad_buffer = vmodel._grad_buffers[dtype].data
    #             model_grad_buffer_start_index = \
    #                 vmodel._grad_buffer_param_index_map[dtype][param][0] + \
    #                 main_slice_orig_start_index
                
    #             main_grad_view = local_shard_info["data"][torch.float].grad[
    #                 main_slice_shard_start_index:
    #                 main_slice_shard_start_index + main_slice_size
    #             ]
    #             model_grad_view = model_grad_buffer[
    #                 model_grad_buffer_start_index:
    #                 model_grad_buffer_start_index + main_slice_size
    #             ]

    #             main_grad_view.detach().copy_(model_grad_view)

    #             # pax(0, {
    #             #     # "local_shard_info" : local_shard_info,
    #             #     "main_slice_orig_start_index" : main_slice_orig_start_index,
    #             #     "main_slice_shard_start_index" : main_slice_shard_start_index,
    #             #     "main_slice_size" : main_slice_size,
    #             #     "model_grad_buffer_start_index" :
    #             #     model_grad_buffer_start_index,
    #             #     "main_grad_view" : tp(main_grad_view),
    #             #     "main_grad_view / detach" : tp(main_grad_view.detach()),
    #             #     "model_grad_view" : tp(model_grad_view),
    #             # })

    #         # pax(0, {
    #         #     "group_index" : group_index,
    #         #     "local_shard_info" : local_shard_info,
    #         #     "shard_param_index_map" : shard_param_index_map,
    #         #     "param" : tp(param),
    #         #     "shard_indexes" : shard_indexes,
    #         #     "grad_buffer_indexes" : grad_buffer_indexes,
    #         # })

    #     pax(0, {
    #         # "world_shard_info_groups" : self.world_shard_info_groups,
    #         # **{"world_shard_info_groups / %d" % i : v
    #         #    for i, v in enumerate(self.world_shard_info_groups)},
    #         # "local_shard_info_groups" : local_shard_info_groups,
    #         "local_shard_info_groups" : [ g["data"] for g in local_shard_info_groups ],
    #     })
1210

1211
    def reduce_gradients(self, model):
1212

1213
        # >>>
1214
1215
1216
1217
        args = get_args()
        # timers = get_timers()
        # <<<

1218
1219
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Reduce-scatter.
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
        # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
        assert args.use_contiguous_buffers_in_local_ddp

        world_sizes = []
        for r in self.world_shard_infos:
            # world_sizes.append(sum(g["size"] for g in r))
            world_sizes.append([ g["size"] for g in r["groups"] ])
        
        # grad_refs ...

        pax(0, {"world_sizes": world_sizes})
        # for world_grads = []
        # for world_shard_info_group
        # x ?
        raise Exception("hi.")
1235
1236
1237
1238

        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1239
1240
1241
        # grad_buffers = [ m._grad_buffers for m in model ]
        for virtual_model in model:

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
            grad_buffer_map = virtual_model._grad_buffers

            # >>>
            assert len(grad_buffer_map) == 1, \
                "multiple param types not currently supported."
            assert args.params_dtype in grad_buffer_map
            assert self.total_param_size == grad_buffer_map[args.params_dtype].numel
            # <<<

            # pax(0, {
            #     "total_param_size" : self.total_param_size,
            #     "grad_buffer" : tp(grad_buffer_map[args.params_dtype]),
            # })
1255

1256
            for dtype, grad_buffer in grad_buffer_map.items():
1257
1258

                dp_grad_buffers = [
1259
1260
1261
1262
                    grad_buffer.get(torch.Size((self.shard_infos[i]["size"],)),
                                    self.shard_infos[i]["start"])
                    for i in range(self.data_parallel_world_size)]
                grad_shard = self.grad_shard_map[dtype]
1263
1264

                torch.distributed.reduce_scatter(
1265
1266
1267
                    grad_shard,
                    dp_grad_buffers,
                    group = self.data_parallel_group,
1268
1269
1270
1271
1272
                )

                # >>>
                pax(0, {
                    "virtual_model" : virtual_model,
1273
                    "grad_buffer_map" : grad_buffer_map,
1274
                    "dtype" : dtype,
1275
1276
                    "grad_shard" : tp(grad_shard),
                    "dp_grad_buffers" : dp_grad_buffers,
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
                })
                # <<<

        # >>>
        pax(0, {
            "model" : model,
            "grad_buffers" : grad_buffers,
            "grad_buffers / 0" : grad_buffers[0],
            "grad_buffers / 0 / data" :tp(list(grad_buffers[0].values())[0].data),
        })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
1289

1290
1291
    def step(self):

1292
        raise Exception("step.")
1293

Lawrence McAfee's avatar
Lawrence McAfee committed
1294
1295
1296
1297
1298

    def gather_params(self):

        raise Exception("gather params.")

1299
1300
# <<<

mohammad's avatar
mohammad committed
1301

mohammad's avatar
mohammad committed
1302
1303
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1304
1305
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
1306
                 params_have_main_grad,
1307
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1308
1309
1310

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
1311
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
1330
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
1331

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1332
1333
1334
1335
1336
1337
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

1338
1339
1340
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
1341
                    if not self.use_contiguous_buffers_in_local_ddp:
1342
1343
                        param.main_grad = None

mohammad's avatar
mohammad committed
1344
        # Clip gradients.
1345
        grad_norm = None
mohammad's avatar
mohammad committed
1346
        if self.clip_grad > 0.0:
1347
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
1348

Rewon Child's avatar
Rewon Child committed
1349
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1350
1351
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
1352

mohammad's avatar
mohammad committed
1353
1354
1355
1356
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
1357
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
1358
1359


1360
1361
1362
1363
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
1364
1365
1366
1367
1368
1369
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)