training.py 41.4 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
24
25
26
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
27
from megatron import get_args
28
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
from megatron.model import Float16Module
41
from megatron.model import ModelType
mohammad's avatar
mohammad committed
42
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
46
47
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
48
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
50
from megatron.utils import calc_params_l2_norm
51
from megatron.schedules import get_forward_backward_func
52
from megatron.utils import report_memory
53
from megatron.model.vision.knn_monitor import compute_feature_bank
54

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55

56
57
58
59
60
61
62
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


63
def pretrain(train_valid_test_dataset_provider,
64
             model_provider,
65
             model_type,
66
             forward_step_func,
67
             process_non_loss_data_func=None,
68
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
69
             args_defaults={}):
70
71
72
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
73
74
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
75
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
76
        4) train the modle using the forward_step_func.
77
78

    Arguments:
79
80
81
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
82
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
83
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
84
85
86
87
88
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
89
90
91
92
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
93
94
95
96
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
97
98
    """

99
    # Initalize and get arguments, timers, and Tensorboard writer.
100
101
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
102

103
104
105
106
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
107
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
108
109
110
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
111
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
112
113
114
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

115
    args = get_args()
Mohammad's avatar
Mohammad committed
116
    timers = get_timers()
117
118

    # Model, optimizer, and learning rate.
119
    timers('model-and-optimizer-setup').start()
120
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
121
                                                               model_type)
122
    timers('model-and-optimizer-setup').stop()
123
124
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
125
126

    # Data stuff.
127
128
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
129
        all_data_iterators = [
130
131
132
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
133
134
135
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
136
137
138
139
140
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
141
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
142
143

    # Print setup timing.
144
145
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
146
    print_rank_0('training ...')
147
148

    iteration = 0
149
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
150
        iteration = train(forward_step_func,
151
                          model, optimizer, opt_param_scheduler,
152
153
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
154
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
155

156
157
158
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
159
                                   valid_data_iterator, model,
160
161
                                   iteration, process_non_loss_data_func,
                                   False)
162
163

    if args.save and iteration != 0:
164
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
165
166
167
168
169
170

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
171
172
                                   0, process_non_loss_data_func,
                                   True)
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
190
191
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
192
193
            iterations += 1
        # Reset
194
        update_num_microbatches(0, consistency_check=False)
195
196
197
198
199
200
201
202
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

203

204
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
205
    """Build the model."""
Mohammad's avatar
Mohammad committed
206
    args = get_args()
207
    args.model_type = model_type
208

209
    # Build model.
210
211
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
212
213
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
214
215
216
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
217
218
219
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
220
            this_model = model_provider_func(
221
222
223
                pre_process=pre_process,
                post_process=post_process
            )
224
            this_model.model_type = model_type
225
            model.append(this_model)
226
    else:
227
228
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
254

255
256
    if not isinstance(model, list):
        model = [model]
257

258
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
259
260
261
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
262
263
264
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
265

266
267
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
268
        print(' > number of parameters on (tensor, pipeline) '
269
              'model parallel rank ({}, {}): {}'.format(
270
271
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
272
273
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
274
275

    # GPU allocation.
276
277
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
278
279

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
280
281
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
282

283
284
285
286
287
288
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
289

290
291
292
293
294
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
295
296
297
298
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
299
300
301
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
302

303
    return model
304
305


306
def get_optimizer_param_scheduler(optimizer):
307
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
308
    args = get_args()
309

310
311
312
313
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
314
315
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
316
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
317
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
318
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
319
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
320
321
322
323
324
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
325
        update_train_iters(args)
326
327
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
328
329
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
330
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
331
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
332
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
333
            lr_warmup_steps = args.lr_warmup_samples
334
    else:
335
336
337
        raise Exception(
            'either train-iters or train-samples should be provided.')

338
    opt_param_scheduler = OptimizerParamScheduler(
339
        optimizer,
340
        max_lr=args.lr,
341
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
342
343
344
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
345
346
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
347
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
        wd_incr_style=args.weight_decay_incr_style,
349
350
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
351

352
    return opt_param_scheduler
353
354


355
356
357
358
359
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
360
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
361
    args = get_args()
362

363
    model = get_model(model_provider_func, model_type)
364

365
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
366
                                   (torchDDP, LocalDDP, Float16Module))
367
368
    optimizer = get_megatron_optimizer(unwrapped_model, no_wd_decay_cond,
                                       scale_lr_cond, lr_mult)
369

370
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
371
372

    if args.load is not None:
373
374
375
376
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
377
        timers('load-checkpoint').start()
378
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
379
        torch.distributed.barrier()
380
381
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
382
383
384
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
385
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
386
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
387
388
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
389
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
390
391
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
392
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
393
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
394
395
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
396

397
    return model, optimizer, opt_param_scheduler
398
399


400
def train_step(forward_step_func, data_iterator,
401
               model, optimizer, opt_param_scheduler):
402
403
404
405
406
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
407
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
408
409
        for partition in model:
            partition.zero_grad_buffer()
410
    optimizer.zero_grad()
411

412
    forward_backward_func = get_forward_backward_func()
413
414
415
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
416

417
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
418
    if args.empty_unused_memory_level >= 1:
419
420
        torch.cuda.empty_cache()

421
422
    # All-reduce if needed.
    if args.DDP_impl == 'local':
423
        timers('backward-params-all-reduce').start()
424
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
425
            model_module.allreduce_gradients()
426
        timers('backward-params-all-reduce').stop()
427

428
429
430
431
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
432
    timers('backward-embedding-all-reduce').start()
433
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
434
            mpu.get_pipeline_model_parallel_world_size() > 1:
435
436
437
438
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
439
440
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
441
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
442
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
443

444
445
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
446
447
448
449
450
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
451

Vijay Korthikanti's avatar
Vijay Korthikanti committed
452
453
454
    # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
    # stages to ensure that position embeddings parameters stay in sync.
    # This should only run for T5 models with pipeline parallelism
Vijay Korthikanti's avatar
Vijay Korthikanti committed
455
456
457
458
459
460
    if mpu.is_rank_in_position_embedding_group() and \
            mpu.get_pipeline_model_parallel_world_size() > 1 and \
            args.pipeline_model_parallel_split_rank is not None:
        unwrapped_model = model[0]
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
461
462
        assert args.DDP_impl == 'local', \
            'T5 model is only supported with local DDP mode'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
463
464
        grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
        torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
465
    timers('backward-embedding-all-reduce').stop()
466

Vijay Korthikanti's avatar
Vijay Korthikanti committed
467
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
468
469
470
471
472
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)


473
474
    # Update parameters.
    timers('optimizer').start()
475
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
476
477
    timers('optimizer').stop()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
478
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
479
480
481
482
483
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)


484
    # Update learning rate.
485
    if update_successful:
486
487
488
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
489
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
490
        skipped_iter = 0
491
492
493
    else:
        skipped_iter = 1

494
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
495
    if args.empty_unused_memory_level >= 2:
496
497
        torch.cuda.empty_cache()

498
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
499
500
501
502
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
503
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
504
505
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
506
507


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
508
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
509
                 loss_scale, report_memory_flag, skipped_iter,
510
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
511
512
513
514
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
515

mohammad's avatar
mohammad committed
516
517
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
518
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
519
520
521
522
523
524
525
526
527
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
528
529
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
530
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
531
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
532
    for key in loss_dict:
mohammad's avatar
mohammad committed
533
        if not skipped_iter:
534
535
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
536
537
538
539
540
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
541
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
542
543
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
544
545
546

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
547

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
548
549
550
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
551
552
553
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
554
    add_to_logging('forward-backward-send-forward-backward-recv')
555
556
557
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
558
    add_to_logging('backward-send-forward-recv')
559
    add_to_logging('backward-send-backward-recv')
560
    add_to_logging('backward-params-all-reduce')
561
    add_to_logging('backward-embedding-all-reduce')
562
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
563
    add_to_logging('optimizer-unscale-and-check-inf')
564
565
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
566
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
567
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
568

mohammad's avatar
mohammad committed
569
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
570
571
572
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
573
574
575
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
576
    # Tensorboard values.
577
578
579
580
581
582
583
584
585
586
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
587
        for key in loss_dict:
mohammad's avatar
mohammad committed
588
589
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
590
                              args.consumed_train_samples)
591
592
593
594
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
595
596
597
598
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
599
600
601
602
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
603
604
605
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
606
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
607
608
609
610
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
611
612
613
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631
632

    if iteration % args.log_interval == 0:
633
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
634
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
635
        if writer:
636
637
638
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
639
640
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
641
        log_string += ' consumed samples: {:12d} |'.format(
642
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
643
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
644
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
645
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
646
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
647
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
648
649
650
651
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
652
653
654
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
655
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
656
657
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
658
659
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
660
661
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
662
663
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
664
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
665
666
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
667
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
668
        total_loss_dict[nan_iters_key] = 0
669
        print_rank_last(log_string)
670
671
672
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
673
674
675
676
677
678
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


679
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
680
681
682
683
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
684
    timers('save-checkpoint').start()
685
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
686
    torch.distributed.barrier()
687
688
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
689
690


691
def train(forward_step_func, model, optimizer, opt_param_scheduler,
692
693
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
694
    """Train the model function."""
Mohammad's avatar
Mohammad committed
695
696
    args = get_args()
    timers = get_timers()
697

698
699
700
    # Write args to tensorboard
    write_args_to_tensorboard()

701
    # Turn on training mode which enables dropout.
702
703
    for model_module in model:
        model_module.train()
704
705
706
707
708
709
710

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

711
    timers('interval-time').start()
712
    print_datetime('before the start of training step')
713
714
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
715
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
716
        args.curr_iteration = iteration
717
718
719
720
721
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
722
                       opt_param_scheduler)
723
        iteration += 1
724
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
725
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
726
                                       get_num_microbatches()
727
728

        # Logging.
729
        loss_scale = optimizer.get_loss_scale().item()
730
731
732
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
733
734
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
735
                                          iteration, loss_scale,
736
                                          report_memory_flag, skipped_iter,
737
                                          grad_norm, params_norm, num_zeros_in_grad)
738
739

        # Autoresume
740
741
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
742
            check_adlr_autoresume_termination(iteration, model, optimizer,
743
                                              opt_param_scheduler)
744
745
746
747
748
749

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
750
                                       valid_data_iterator, model,
751
752
                                       iteration, process_non_loss_data_func,
                                       False)
753

754
755
        # Checkpointing
        saved_checkpoint = False
756
757
758
759
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
760
                                         opt_param_scheduler)
761
762
763
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

764
765
766
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
767
                                     opt_param_scheduler)
768
769
            saved_checkpoint = True

770
771
772
773
774
775
776
777
778
779
780
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
781
                                             opt_param_scheduler)
782
                print_datetime('exiting program after {} minutes'.format(train_time))
783
784
                sys.exit()

785
        # Exiting based on iterations
786
        if args.exit_interval and iteration % args.exit_interval == 0:
787
788
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
789
                                         opt_param_scheduler)
790
            torch.distributed.barrier()
791
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
792
            sys.exit()
793

794

mohammad's avatar
mohammad committed
795
    return iteration
796
797


798
799
800
801
802
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
803
    """Evaluation."""
Mohammad's avatar
Mohammad committed
804
    args = get_args()
805

Vijay Korthikanti's avatar
Vijay Korthikanti committed
806
807
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
808

809
    # Turn on evaluation mode which disables dropout.
810
811
    for model_module in model:
        model_module.eval()
812
813
814
815
816
817
818
819
820
821

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
822

823
            forward_backward_func = get_forward_backward_func()
824
825
826
827
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

828
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
829
            if args.empty_unused_memory_level >= 1:
830
831
                torch.cuda.empty_cache()

832
833
834
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
835
                    for key in loss_dict:
836
837
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
838

839
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
840
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
841
                                           * get_num_microbatches()
842
843
844
845
846
847
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

848
    # Move model back to the train mode.
849
850
    for model_module in model:
        model_module.train()
851
852

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
853
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
854

855
    return total_loss_dict, collected_non_loss_data
856
857
858

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
859
860
                               iteration, process_non_loss_data_func,
                               verbose=False):
861
    """Helper function to evaluate and dump results on screen."""
862
    args = get_args()
Mohammad's avatar
Mohammad committed
863
864
    writer = get_tensorboard_writer()

865
866
867
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
868
869
870
871
872
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
873
        if writer:
mohammad's avatar
mohammad committed
874
            writer.add_scalar('{} validation'.format(key),
875
876
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
877
            writer.add_scalar('{} validation vs samples'.format(key),
878
879
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
880
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
881
                writer.add_scalar('{} validation ppl'.format(key), ppl,
882
                                  iteration)
mohammad's avatar
mohammad committed
883
                writer.add_scalar('{} validation ppl vs samples'.format(key),
884
                                  ppl, args.consumed_train_samples)
885

886
887
888
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

889
    length = len(string) + 1
890
891
892
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
893
894


Vijay Korthikanti's avatar
Vijay Korthikanti committed
895
def cyclic_iter(iter):
896
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
897
        for x in iter:
898
899
            yield x

900
901
902
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
903
    args = get_args()
904

905
906
907
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
908
909
910

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
911
912
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
913
        args.consumed_train_samples = args.iteration * args.global_batch_size
914
    if args.iteration > 0 and args.consumed_valid_samples == 0:
915
916
917
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
918

919
    # Data loader only on rank 0 of each model parallel group.
920
    if mpu.get_tensor_model_parallel_rank() == 0:
921
922

        # Number of train/valid/test samples.
923
924
925
926
927
928
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
929
        test_iters = args.eval_iters
930
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
931
932
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
933
934
935
936
937
938
939
940
941
942
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
943
944
945
946
947
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
948
949
950
951
952
953
954
955
956
957
958
959
960

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
961
962
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
963
964
965
966
967
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
968
969
970
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

971
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
972
973
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
974
975
976
    else:
        train_data_iterator = None

977
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
978
979
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
980
    else:
981
        valid_data_iterator = None
982

983
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
984
985
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
986
987
988
    else:
        test_data_iterator = None

989
    return train_data_iterator, valid_data_iterator, test_data_iterator