unet_2d_blocks.py 136 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional, Tuple, Union
15

16
import numpy as np
17
import torch
18
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
19
20
from torch import nn

21
from ..utils import is_torch_version, logging
22
from ..utils.torch_utils import apply_freeu
23
from .activations import get_activation
24
from .attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
25
from .dual_transformer_2d import DualTransformer2DModel
26
from .normalization import AdaGroupNorm
27
28
29
30
31
32
33
34
35
36
from .resnet import (
    Downsample2D,
    FirDownsample2D,
    FirUpsample2D,
    KDownsample2D,
    KUpsample2D,
    ResnetBlock2D,
    ResnetBlockCondNorm2D,
    Upsample2D,
)
37
from .transformer_2d import Transformer2DModel
Patrick von Platen's avatar
Patrick von Platen committed
38
39


40
41
42
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


43
def get_down_block(
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    down_block_type: str,
    num_layers: int,
    in_channels: int,
    out_channels: int,
    temb_channels: int,
    add_downsample: bool,
    resnet_eps: float,
    resnet_act_fn: str,
    transformer_layers_per_block: int = 1,
    num_attention_heads: Optional[int] = None,
    resnet_groups: Optional[int] = None,
    cross_attention_dim: Optional[int] = None,
    downsample_padding: Optional[int] = None,
    dual_cross_attention: bool = False,
    use_linear_projection: bool = False,
    only_cross_attention: bool = False,
    upcast_attention: bool = False,
    resnet_time_scale_shift: str = "default",
    attention_type: str = "default",
    resnet_skip_time_act: bool = False,
    resnet_out_scale_factor: float = 1.0,
    cross_attention_norm: Optional[str] = None,
    attention_head_dim: Optional[int] = None,
    downsample_type: Optional[str] = None,
    dropout: float = 0.0,
69
):
70
71
72
73
74
75
76
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
80
81
82
83
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
84
            dropout=dropout,
85
86
87
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
88
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
89
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
90
91
92
93
94
95
96
97
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "ResnetDownsampleBlock2D":
        return ResnetDownsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
98
            dropout=dropout,
Will Berman's avatar
Will Berman committed
99
100
101
102
103
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
104
105
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
106
        )
Patrick von Platen's avatar
Patrick von Platen committed
107
    elif down_block_type == "AttnDownBlock2D":
108
109
110
111
        if add_downsample is False:
            downsample_type = None
        else:
            downsample_type = downsample_type or "conv"  # default to 'conv'
Patrick von Platen's avatar
Patrick von Platen committed
112
        return AttnDownBlock2D(
113
114
115
116
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
117
            dropout=dropout,
118
119
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
120
            resnet_groups=resnet_groups,
121
            downsample_padding=downsample_padding,
122
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
123
            resnet_time_scale_shift=resnet_time_scale_shift,
124
            downsample_type=downsample_type,
125
        )
Patrick von Platen's avatar
Patrick von Platen committed
126
    elif down_block_type == "CrossAttnDownBlock2D":
127
        if cross_attention_dim is None:
128
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
129
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
130
            num_layers=num_layers,
131
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
135
            dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
136
137
138
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
139
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
140
            downsample_padding=downsample_padding,
141
            cross_attention_dim=cross_attention_dim,
142
            num_attention_heads=num_attention_heads,
143
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
144
            use_linear_projection=use_linear_projection,
145
            only_cross_attention=only_cross_attention,
146
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
147
            resnet_time_scale_shift=resnet_time_scale_shift,
148
            attention_type=attention_type,
Will Berman's avatar
Will Berman committed
149
150
151
152
153
154
155
156
157
        )
    elif down_block_type == "SimpleCrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
        return SimpleCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
158
            dropout=dropout,
Will Berman's avatar
Will Berman committed
159
160
161
162
163
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
164
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
165
            resnet_time_scale_shift=resnet_time_scale_shift,
166
167
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
168
            only_cross_attention=only_cross_attention,
169
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
170
        )
Patrick von Platen's avatar
Patrick von Platen committed
171
172
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
173
174
175
176
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
177
            dropout=dropout,
178
179
180
181
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
182
            resnet_time_scale_shift=resnet_time_scale_shift,
183
        )
Patrick von Platen's avatar
Patrick von Platen committed
184
185
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
186
187
188
189
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
190
            dropout=dropout,
191
192
193
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
194
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
195
            resnet_time_scale_shift=resnet_time_scale_shift,
196
        )
197
198
199
200
201
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
202
            dropout=dropout,
203
204
205
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
206
            resnet_groups=resnet_groups,
207
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
208
            resnet_time_scale_shift=resnet_time_scale_shift,
209
        )
Will Berman's avatar
Will Berman committed
210
211
212
213
214
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
215
            dropout=dropout,
Will Berman's avatar
Will Berman committed
216
217
218
219
220
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
221
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
222
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
223
        )
224
225
226
227
228
229
    elif down_block_type == "KDownBlock2D":
        return KDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
230
            dropout=dropout,
231
232
233
234
235
236
237
238
239
240
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif down_block_type == "KCrossAttnDownBlock2D":
        return KCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
241
            dropout=dropout,
242
243
244
245
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
246
            attention_head_dim=attention_head_dim,
247
248
            add_self_attention=True if not add_downsample else False,
        )
Will Berman's avatar
Will Berman committed
249
    raise ValueError(f"{down_block_type} does not exist.")
250
251
252


def get_up_block(
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    up_block_type: str,
    num_layers: int,
    in_channels: int,
    out_channels: int,
    prev_output_channel: int,
    temb_channels: int,
    add_upsample: bool,
    resnet_eps: float,
    resnet_act_fn: str,
    resolution_idx: Optional[int] = None,
    transformer_layers_per_block: int = 1,
    num_attention_heads: Optional[int] = None,
    resnet_groups: Optional[int] = None,
    cross_attention_dim: Optional[int] = None,
    dual_cross_attention: bool = False,
    use_linear_projection: bool = False,
    only_cross_attention: bool = False,
    upcast_attention: bool = False,
    resnet_time_scale_shift: str = "default",
    attention_type: str = "default",
    resnet_skip_time_act: bool = False,
    resnet_out_scale_factor: float = 1.0,
    cross_attention_norm: Optional[str] = None,
    attention_head_dim: Optional[int] = None,
    upsample_type: Optional[str] = None,
    dropout: float = 0.0,
) -> nn.Module:
280
281
282
283
284
285
286
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
287
288
289
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
290
291
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
292
293
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
294
            temb_channels=temb_channels,
295
            resolution_idx=resolution_idx,
296
            dropout=dropout,
297
298
299
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
300
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
301
302
303
304
305
306
307
308
309
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "ResnetUpsampleBlock2D":
        return ResnetUpsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
310
            resolution_idx=resolution_idx,
311
            dropout=dropout,
Will Berman's avatar
Will Berman committed
312
313
314
315
316
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
317
318
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
319
        )
Patrick von Platen's avatar
Patrick von Platen committed
320
    elif up_block_type == "CrossAttnUpBlock2D":
321
322
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
323
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
324
            num_layers=num_layers,
325
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
326
327
328
329
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
330
            resolution_idx=resolution_idx,
331
            dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
332
333
334
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
335
            resnet_groups=resnet_groups,
336
            cross_attention_dim=cross_attention_dim,
337
            num_attention_heads=num_attention_heads,
338
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
339
            use_linear_projection=use_linear_projection,
340
            only_cross_attention=only_cross_attention,
341
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
342
            resnet_time_scale_shift=resnet_time_scale_shift,
343
            attention_type=attention_type,
Will Berman's avatar
Will Berman committed
344
345
346
347
348
349
350
351
352
353
        )
    elif up_block_type == "SimpleCrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
        return SimpleCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
354
            resolution_idx=resolution_idx,
355
            dropout=dropout,
Will Berman's avatar
Will Berman committed
356
357
358
359
360
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
361
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
362
            resnet_time_scale_shift=resnet_time_scale_shift,
363
364
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
365
            only_cross_attention=only_cross_attention,
366
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
367
        )
Patrick von Platen's avatar
Patrick von Platen committed
368
    elif up_block_type == "AttnUpBlock2D":
369
370
371
372
373
        if add_upsample is False:
            upsample_type = None
        else:
            upsample_type = upsample_type or "conv"  # default to 'conv'

Patrick von Platen's avatar
Patrick von Platen committed
374
        return AttnUpBlock2D(
375
376
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
377
378
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
379
            temb_channels=temb_channels,
380
            resolution_idx=resolution_idx,
381
            dropout=dropout,
382
383
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
384
            resnet_groups=resnet_groups,
385
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
386
            resnet_time_scale_shift=resnet_time_scale_shift,
387
            upsample_type=upsample_type,
388
        )
Patrick von Platen's avatar
Patrick von Platen committed
389
390
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
391
392
393
394
395
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
396
            resolution_idx=resolution_idx,
397
            dropout=dropout,
398
399
400
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
Will Berman's avatar
Will Berman committed
401
            resnet_time_scale_shift=resnet_time_scale_shift,
402
        )
Patrick von Platen's avatar
Patrick von Platen committed
403
404
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
405
406
407
408
409
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
410
            resolution_idx=resolution_idx,
411
            dropout=dropout,
412
413
414
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
415
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
416
            resnet_time_scale_shift=resnet_time_scale_shift,
417
        )
418
419
420
421
422
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
423
            resolution_idx=resolution_idx,
424
            dropout=dropout,
425
426
427
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
428
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
429
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
430
            temb_channels=temb_channels,
431
        )
Will Berman's avatar
Will Berman committed
432
433
434
435
436
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
437
            resolution_idx=resolution_idx,
438
            dropout=dropout,
Will Berman's avatar
Will Berman committed
439
440
441
442
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
443
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
444
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
445
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
446
        )
447
448
449
450
451
452
    elif up_block_type == "KUpBlock2D":
        return KUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
453
            resolution_idx=resolution_idx,
454
            dropout=dropout,
455
456
457
458
459
460
461
462
463
464
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif up_block_type == "KCrossAttnUpBlock2D":
        return KCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
465
            resolution_idx=resolution_idx,
466
            dropout=dropout,
467
468
469
470
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
471
            attention_head_dim=attention_head_dim,
472
473
        )

474
    raise ValueError(f"{up_block_type} does not exist.")
475
476


477
class AutoencoderTinyBlock(nn.Module):
478
    """
Patrick von Platen's avatar
Patrick von Platen committed
479
480
    Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
    blocks.
481
482
483
484

    Args:
        in_channels (`int`): The number of input channels.
        out_channels (`int`): The number of output channels.
Patrick von Platen's avatar
Patrick von Platen committed
485
486
        act_fn (`str`):
            ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
487
488

    Returns:
Patrick von Platen's avatar
Patrick von Platen committed
489
490
        `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
        `out_channels`.
491
492
    """

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    def __init__(self, in_channels: int, out_channels: int, act_fn: str):
        super().__init__()
        act_fn = get_activation(act_fn)
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
        )
        self.skip = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
            if in_channels != out_channels
            else nn.Identity()
        )
        self.fuse = nn.ReLU()

510
    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
511
512
513
        return self.fuse(self.conv(x) + self.skip(x))


Patrick von Platen's avatar
Patrick von Platen committed
514
class UNetMidBlock2D(nn.Module):
515
516
517
518
519
520
521
522
523
    """
    A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.

    Args:
        in_channels (`int`): The number of input channels.
        temb_channels (`int`): The number of temporal embedding channels.
        dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
        num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
        resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
Patrick von Platen's avatar
Patrick von Platen committed
524
525
526
        resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
            The type of normalization to apply to the time embeddings. This can help to improve the performance of the
            model on tasks with long-range temporal dependencies.
527
        resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
Patrick von Platen's avatar
Patrick von Platen committed
528
529
        resnet_groups (`int`, *optional*, defaults to 32):
            The number of groups to use in the group normalization layers of the resnet blocks.
530
        attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
Patrick von Platen's avatar
Patrick von Platen committed
531
532
        resnet_pre_norm (`bool`, *optional*, defaults to `True`):
            Whether to use pre-normalization for the resnet blocks.
533
        add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
Patrick von Platen's avatar
Patrick von Platen committed
534
535
536
        attention_head_dim (`int`, *optional*, defaults to 1):
            Dimension of a single attention head. The number of attention heads is determined based on this value and
            the number of input channels.
537
538
539
        output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.

    Returns:
Patrick von Platen's avatar
Patrick von Platen committed
540
541
        `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
        in_channels, height, width)`.
542
543
544

    """

Patrick von Platen's avatar
Patrick von Platen committed
545
546
547
548
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
549
        dropout: float = 0.0,
550
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
551
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
552
        resnet_time_scale_shift: str = "default",  # default, spatial
Patrick von Platen's avatar
Patrick von Platen committed
553
554
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
555
        attn_groups: Optional[int] = None,
556
        resnet_pre_norm: bool = True,
Will Berman's avatar
Will Berman committed
557
        add_attention: bool = True,
558
559
        attention_head_dim: int = 1,
        output_scale_factor: float = 1.0,
Patrick von Platen's avatar
Patrick von Platen committed
560
561
    ):
        super().__init__()
562
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Will Berman's avatar
Will Berman committed
563
        self.add_attention = add_attention
Patrick von Platen's avatar
Patrick von Platen committed
564

565
566
567
        if attn_groups is None:
            attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None

568
        # there is always at least one resnet
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        if resnet_time_scale_shift == "spatial":
            resnets = [
                ResnetBlockCondNorm2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm="spatial",
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                )
            ]
        else:
            resnets = [
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            ]
598
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
599

600
601
602
603
604
605
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
            )
            attention_head_dim = in_channels

606
        for _ in range(num_layers):
Will Berman's avatar
Will Berman committed
607
608
            if self.add_attention:
                attentions.append(
609
                    Attention(
Will Berman's avatar
Will Berman committed
610
                        in_channels,
611
612
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
613
614
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
615
                        norm_num_groups=attn_groups,
YiYi Xu's avatar
YiYi Xu committed
616
                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
617
618
619
620
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
Will Berman's avatar
Will Berman committed
621
                    )
622
                )
Will Berman's avatar
Will Berman committed
623
624
625
            else:
                attentions.append(None)

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
            if resnet_time_scale_shift == "spatial":
                resnets.append(
                    ResnetBlockCondNorm2D(
                        in_channels=in_channels,
                        out_channels=in_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm="spatial",
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                    )
                )
            else:
                resnets.append(
                    ResnetBlock2D(
                        in_channels=in_channels,
                        out_channels=in_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                    )
654
                )
Patrick von Platen's avatar
Patrick von Platen committed
655

656
657
658
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

659
    def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
Patrick von Platen's avatar
Patrick von Platen committed
660
        hidden_states = self.resnets[0](hidden_states, temb)
661
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
662
            if attn is not None:
YiYi Xu's avatar
YiYi Xu committed
663
                hidden_states = attn(hidden_states, temb=temb)
Patrick von Platen's avatar
Patrick von Platen committed
664
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
665

666
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
667

668

Patrick von Platen's avatar
Patrick von Platen committed
669
670
671
672
673
674
675
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
676
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
Patrick von Platen's avatar
Patrick von Platen committed
677
678
679
680
681
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
682
683
684
685
686
687
688
        num_attention_heads: int = 1,
        output_scale_factor: float = 1.0,
        cross_attention_dim: int = 1280,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
Patrick von Platen's avatar
Patrick von Platen committed
689
690
691
    ):
        super().__init__()

692
        self.has_cross_attention = True
693
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
694
695
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

696
697
698
699
        # support for variable transformer layers per block
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

Patrick von Platen's avatar
Patrick von Platen committed
700
701
        # there is always at least one resnet
        resnets = [
702
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
703
704
705
706
707
708
709
710
711
712
713
714
715
716
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

717
        for i in range(num_layers):
718
719
720
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
721
722
                        num_attention_heads,
                        in_channels // num_attention_heads,
723
                        in_channels=in_channels,
724
                        num_layers=transformer_layers_per_block[i],
725
726
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
727
                        use_linear_projection=use_linear_projection,
728
                        upcast_attention=upcast_attention,
729
                        attention_type=attention_type,
730
731
732
733
734
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
735
736
                        num_attention_heads,
                        in_channels // num_attention_heads,
737
738
739
740
741
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
742
743
                )
            resnets.append(
744
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

761
762
        self.gradient_checkpointing = False

763
    def forward(
764
765
766
767
768
769
770
771
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
772
773
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
774
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
775
776
777
778
779
780
781
782
783
784
785
786
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
ethansmith2000's avatar
ethansmith2000 committed
787
                hidden_states = attn(
788
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
789
790
791
792
793
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
                )[0]
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
810
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

        return hidden_states


class UNetMidBlock2DSimpleCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
827
828
829
830
831
832
        attention_head_dim: int = 1,
        output_scale_factor: float = 1.0,
        cross_attention_dim: int = 1280,
        skip_time_act: bool = False,
        only_cross_attention: bool = False,
        cross_attention_norm: Optional[str] = None,
Will Berman's avatar
Will Berman committed
833
834
835
836
837
    ):
        super().__init__()

        self.has_cross_attention = True

838
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
839
840
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

841
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
856
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
857
858
859
860
861
            )
        ]
        attentions = []

        for _ in range(num_layers):
862
863
864
865
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
866
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
867
                Attention(
Will Berman's avatar
Will Berman committed
868
869
870
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
871
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
872
873
874
875
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
876
                    only_cross_attention=only_cross_attention,
877
                    cross_attention_norm=cross_attention_norm,
878
                    processor=processor,
Will Berman's avatar
Will Berman committed
879
880
881
882
883
884
885
886
887
888
889
890
891
892
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
893
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
894
895
896
897
898
899
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

900
    def forward(
901
902
903
904
905
906
907
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
908
    ) -> torch.FloatTensor:
909
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
910
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
911
912
913
914
915
916
917
918
919
920
921
922

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

923
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
924
925
926
927
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
928
                encoder_hidden_states=encoder_hidden_states,
929
                attention_mask=mask,
930
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
931
932
933
            )

            # resnet
934
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
935
936
937
938

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
939
class AttnDownBlock2D(nn.Module):
940
941
942
943
944
945
946
947
948
949
950
951
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
952
953
954
955
        attention_head_dim: int = 1,
        output_scale_factor: float = 1.0,
        downsample_padding: int = 1,
        downsample_type: str = "conv",
956
957
958
959
    ):
        super().__init__()
        resnets = []
        attentions = []
960
        self.downsample_type = downsample_type
961

962
963
964
965
966
967
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

968
969
970
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
971
                ResnetBlock2D(
972
973
974
975
976
977
978
979
980
981
982
983
984
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
985
                Attention(
986
                    out_channels,
987
988
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
989
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
990
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
991
                    norm_num_groups=resnet_groups,
992
993
994
995
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
996
997
998
999
1000
1001
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

1002
        if downsample_type == "conv":
1003
            self.downsamplers = nn.ModuleList(
1004
1005
                [
                    Downsample2D(
1006
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1007
1008
                    )
                ]
1009
            )
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        elif downsample_type == "resnet":
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        down=True,
                    )
                ]
            )
1028
1029
1030
        else:
            self.downsamplers = None

1031
1032
1033
1034
1035
1036
1037
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
1038
1039
1040
1041
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        lora_scale = cross_attention_kwargs.get("scale", 1.0)

1042
1043
1044
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
1045
1046
1047
            cross_attention_kwargs.update({"scale": lora_scale})
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1048
            output_states = output_states + (hidden_states,)
1049
1050
1051

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1052
                if self.downsample_type == "resnet":
1053
                    hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale)
1054
                else:
1055
                    hidden_states = downsampler(hidden_states, scale=lora_scale)
1056
1057
1058
1059
1060
1061

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1062
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
1063
1064
1065
1066
1067
1068
1069
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
1070
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
Patrick von Platen's avatar
Patrick von Platen committed
1071
1072
1073
1074
1075
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        downsample_padding: int = 1,
        add_downsample: bool = True,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
Patrick von Platen's avatar
Patrick von Platen committed
1086
1087
1088
1089
1090
    ):
        super().__init__()
        resnets = []
        attentions = []

1091
        self.has_cross_attention = True
1092
        self.num_attention_heads = num_attention_heads
1093
1094
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers
Patrick von Platen's avatar
Patrick von Platen committed
1095
1096
1097
1098

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1099
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
1112
1113
1114
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1115
1116
                        num_attention_heads,
                        out_channels // num_attention_heads,
1117
                        in_channels=out_channels,
1118
                        num_layers=transformer_layers_per_block[i],
1119
1120
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1121
                        use_linear_projection=use_linear_projection,
1122
                        only_cross_attention=only_cross_attention,
1123
                        upcast_attention=upcast_attention,
1124
                        attention_type=attention_type,
1125
1126
1127
1128
1129
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1130
1131
                        num_attention_heads,
                        out_channels // num_attention_heads,
1132
1133
1134
1135
1136
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1137
1138
1139
1140
1141
1142
1143
1144
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1145
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1146
1147
1148
1149
1150
1151
                    )
                ]
            )
        else:
            self.downsamplers = None

1152
1153
        self.gradient_checkpointing = False

1154
    def forward(
1155
1156
1157
1158
1159
1160
1161
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1162
1163
        additional_residuals: Optional[torch.FloatTensor] = None,
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
Patrick von Platen's avatar
Patrick von Platen committed
1164
1165
        output_states = ()

1166
1167
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

Will Berman's avatar
Will Berman committed
1168
1169
1170
        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
1171
1172
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1173
                def create_custom_forward(module, return_dict=None):
1174
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1175
1176
1177
1178
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1179
1180
1181

                    return custom_forward

1182
1183
1184
1185
1186
1187
1188
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1189
                hidden_states = attn(
1190
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1191
1192
1193
1194
1195
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1196
                )[0]
1197
            else:
1198
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1199
1200
1201
1202
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1203
1204
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1205
1206
                    return_dict=False,
                )[0]
1207

Will Berman's avatar
Will Berman committed
1208
1209
1210
1211
            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

1212
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1213
1214
1215

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1216
                hidden_states = downsampler(hidden_states, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1217

1218
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1219
1220
1221
1222

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1223
class DownBlock2D(nn.Module):
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1236
1237
1238
        output_scale_factor: float = 1.0,
        add_downsample: bool = True,
        downsample_padding: int = 1,
1239
1240
1241
1242
1243
1244
1245
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1246
                ResnetBlock2D(
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
1264
1265
                [
                    Downsample2D(
1266
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1267
1268
                    )
                ]
1269
1270
1271
1272
            )
        else:
            self.downsamplers = None

1273
1274
        self.gradient_checkpointing = False

1275
1276
1277
    def forward(
        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
1278
1279
1280
        output_states = ()

        for resnet in self.resnets:
1281
1282
1283
1284
1285
1286
1287
1288
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1289
1290
1291
1292
1293
1294
1295
1296
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1297
            else:
1298
                hidden_states = resnet(hidden_states, temb, scale=scale)
1299

1300
            output_states = output_states + (hidden_states,)
1301
1302
1303

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1304
                hidden_states = downsampler(hidden_states, scale=scale)
1305

1306
            output_states = output_states + (hidden_states,)
1307
1308
1309
1310

        return hidden_states, output_states


1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1323
1324
1325
        output_scale_factor: float = 1.0,
        add_downsample: bool = True,
        downsample_padding: int = 1,
1326
1327
1328
1329
1330
1331
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
            if resnet_time_scale_shift == "spatial":
                resnets.append(
                    ResnetBlockCondNorm2D(
                        in_channels=in_channels,
                        out_channels=out_channels,
                        temb_channels=None,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm="spatial",
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                    )
                )
            else:
                resnets.append(
                    ResnetBlock2D(
                        in_channels=in_channels,
                        out_channels=out_channels,
                        temb_channels=None,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                    )
1360
1361
1362
1363
1364
1365
1366
1367
                )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1368
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1369
1370
1371
1372
1373
1374
                    )
                ]
            )
        else:
            self.downsamplers = None

1375
    def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
1376
        for resnet in self.resnets:
1377
            hidden_states = resnet(hidden_states, temb=None, scale=scale)
1378
1379
1380

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1381
                hidden_states = downsampler(hidden_states, scale)
1382
1383
1384
1385

        return hidden_states


1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1398
1399
1400
1401
        attention_head_dim: int = 1,
        output_scale_factor: float = 1.0,
        add_downsample: bool = True,
        downsample_padding: int = 1,
1402
1403
1404
1405
1406
    ):
        super().__init__()
        resnets = []
        attentions = []

1407
1408
1409
1410
1411
1412
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1413
1414
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
            if resnet_time_scale_shift == "spatial":
                resnets.append(
                    ResnetBlockCondNorm2D(
                        in_channels=in_channels,
                        out_channels=out_channels,
                        temb_channels=None,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm="spatial",
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                    )
                )
            else:
                resnets.append(
                    ResnetBlock2D(
                        in_channels=in_channels,
                        out_channels=out_channels,
                        temb_channels=None,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                    )
1443
1444
                )
            attentions.append(
1445
                Attention(
1446
                    out_channels,
1447
1448
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1449
1450
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1451
                    norm_num_groups=resnet_groups,
1452
1453
1454
1455
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1466
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1467
1468
1469
1470
1471
1472
                    )
                ]
            )
        else:
            self.downsamplers = None

1473
    def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
1474
        for resnet, attn in zip(self.resnets, self.attentions):
1475
1476
1477
            hidden_states = resnet(hidden_states, temb=None, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1478
1479
1480

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1481
                hidden_states = downsampler(hidden_states, scale)
1482
1483
1484
1485

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1486
class AttnSkipDownBlock2D(nn.Module):
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
1498
1499
1500
        attention_head_dim: int = 1,
        output_scale_factor: float = np.sqrt(2.0),
        add_downsample: bool = True,
1501
1502
1503
1504
1505
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

1506
1507
1508
1509
1510
1511
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1512
1513
1514
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1515
                ResnetBlock2D(
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
1530
                Attention(
1531
                    out_channels,
1532
1533
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1534
1535
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
1536
1537
1538
1539
1540
                    norm_num_groups=32,
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1541
1542
1543
1544
                )
            )

        if add_downsample:
1545
            self.resnet_down = ResnetBlock2D(
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1556
                use_in_shortcut=True,
1557
1558
1559
                down=True,
                kernel="fir",
            )
1560
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1561
1562
1563
1564
1565
1566
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

1567
1568
1569
1570
1571
1572
1573
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        skip_sample: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
1574
1575
1576
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
1577
1578
1579
            hidden_states = resnet(hidden_states, temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1580
1581
1582
            output_states += (hidden_states,)

        if self.downsamplers is not None:
1583
            hidden_states = self.resnet_down(hidden_states, temb, scale=scale)
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1594
class SkipDownBlock2D(nn.Module):
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
1606
1607
1608
        output_scale_factor: float = np.sqrt(2.0),
        add_downsample: bool = True,
        downsample_padding: int = 1,
1609
1610
1611
1612
1613
1614
1615
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1616
                ResnetBlock2D(
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
1632
            self.resnet_down = ResnetBlock2D(
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1643
                use_in_shortcut=True,
1644
1645
1646
                down=True,
                kernel="fir",
            )
1647
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1648
1649
1650
1651
1652
1653
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

1654
1655
1656
1657
1658
1659
1660
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        skip_sample: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
1661
1662
1663
        output_states = ()

        for resnet in self.resnets:
1664
            hidden_states = resnet(hidden_states, temb, scale)
1665
1666
1667
            output_states += (hidden_states,)

        if self.downsamplers is not None:
1668
            hidden_states = self.resnet_down(hidden_states, temb, scale)
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Will Berman's avatar
Will Berman committed
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
class ResnetDownsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1692
1693
1694
        output_scale_factor: float = 1.0,
        add_downsample: bool = True,
        skip_time_act: bool = False,
Will Berman's avatar
Will Berman committed
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1713
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1733
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1734
1735
1736
1737
1738
1739
1740
1741
1742
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1743
1744
1745
    def forward(
        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
Will Berman's avatar
Will Berman committed
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1757
1758
1759
1760
1761
1762
1763
1764
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
1765
            else:
1766
                hidden_states = resnet(hidden_states, temb, scale)
Will Berman's avatar
Will Berman committed
1767

1768
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1769
1770
1771

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1772
                hidden_states = downsampler(hidden_states, temb, scale)
Will Berman's avatar
Will Berman committed
1773

1774
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791

        return hidden_states, output_states


class SimpleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1792
1793
1794
1795
1796
1797
1798
        attention_head_dim: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        add_downsample: bool = True,
        skip_time_act: bool = False,
        only_cross_attention: bool = False,
        cross_attention_norm: Optional[str] = None,
Will Berman's avatar
Will Berman committed
1799
1800
1801
1802
1803
1804
1805
1806
    ):
        super().__init__()

        self.has_cross_attention = True

        resnets = []
        attentions = []

1807
1808
        self.attention_head_dim = attention_head_dim
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1824
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1825
1826
                )
            )
1827
1828
1829
1830
1831

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1832
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1833
                Attention(
Will Berman's avatar
Will Berman committed
1834
1835
1836
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
1837
                    dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
1838
1839
1840
1841
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1842
                    only_cross_attention=only_cross_attention,
1843
                    cross_attention_norm=cross_attention_norm,
1844
                    processor=processor,
Will Berman's avatar
Will Berman committed
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1864
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1865
1866
1867
1868
1869
1870
1871
1872
1873
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1874
    def forward(
1875
1876
1877
1878
1879
1880
1881
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1882
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
Will Berman's avatar
Will Berman committed
1883
        output_states = ()
1884
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
1885

1886
1887
        lora_scale = cross_attention_kwargs.get("scale", 1.0)

1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
1899
        for resnet, attn in zip(self.resnets, self.attentions):
1900
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
1901

1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
ethansmith2000's avatar
ethansmith2000 committed
1912
                hidden_states = attn(
1913
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1914
1915
1916
1917
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=mask,
                    **cross_attention_kwargs,
                )
1918
            else:
1919
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1920
1921
1922
1923

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
1924
                    attention_mask=mask,
1925
1926
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
1927

1928
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1929
1930
1931

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1932
                hidden_states = downsampler(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
1933

1934
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1935
1936
1937
1938

        return hidden_states, output_states


1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
class KDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
1950
        add_downsample: bool = False,
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
1961
                ResnetBlockCondNorm2D(
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            # YiYi's comments- might be able to use FirDownsample2D, look into details later
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1985
1986
1987
    def forward(
        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1999
2000
2001
2002
2003
2004
2005
2006
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2007
            else:
2008
                hidden_states = resnet(hidden_states, temb, scale)
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


class KCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        cross_attention_dim: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_group_size: int = 32,
2029
        add_downsample: bool = True,
2030
        attention_head_dim: int = 64,
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
        add_self_attention: bool = False,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
2047
                ResnetBlockCondNorm2D(
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    out_channels,
2063
2064
                    out_channels // attention_head_dim,
                    attention_head_dim,
2065
2066
2067
2068
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
2069
                    cross_attention_norm="layer_norm",
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
                    group_size=resnet_group_size,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
2085
2086
2087
2088
2089
2090
2091
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2092
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
2093
        output_states = ()
2094
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

2108
2109
2110
2111
2112
2113
2114
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
2115
                hidden_states = attn(
2116
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
2117
2118
2119
2120
2121
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
2122
                )
2123
            else:
2124
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
2125
2126
2127
2128
2129
2130
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
2131
                    encoder_attention_mask=encoder_attention_mask,
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
                )

            if self.downsamplers is None:
                output_states += (None,)
            else:
                output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
2146
class AttnUpBlock2D(nn.Module):
2147
2148
2149
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2150
2151
        prev_output_channel: int,
        out_channels: int,
2152
        temb_channels: int,
2153
        resolution_idx: int = None,
2154
2155
2156
2157
2158
2159
2160
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2161
2162
2163
        attention_head_dim: int = 1,
        output_scale_factor: float = 1.0,
        upsample_type: str = "conv",
2164
2165
2166
2167
2168
    ):
        super().__init__()
        resnets = []
        attentions = []

2169
2170
        self.upsample_type = upsample_type

2171
2172
2173
2174
2175
2176
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2177
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2178
2179
2180
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2181
            resnets.append(
2182
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2183
2184
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2196
                Attention(
Patrick von Platen's avatar
Patrick von Platen committed
2197
                    out_channels,
2198
2199
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2200
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
2201
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
2202
                    norm_num_groups=resnet_groups,
2203
2204
2205
2206
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2207
2208
2209
2210
2211
2212
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

2213
        if upsample_type == "conv":
Patrick von Platen's avatar
Patrick von Platen committed
2214
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
        elif upsample_type == "resnet":
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        up=True,
                    )
                ]
            )
2233
2234
2235
        else:
            self.upsamplers = None

2236
2237
        self.resolution_idx = resolution_idx

2238
2239
2240
2241
2242
2243
2244
2245
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        scale: float = 1.0,
    ) -> torch.FloatTensor:
2246
2247
2248
2249
2250
2251
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2252
2253
2254
            hidden_states = resnet(hidden_states, temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
2255
2256
2257

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2258
                if self.upsample_type == "resnet":
2259
                    hidden_states = upsampler(hidden_states, temb=temb, scale=scale)
2260
                else:
2261
                    hidden_states = upsampler(hidden_states, scale=scale)
2262
2263
2264
2265

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2266
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
2267
2268
2269
2270
2271
2272
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
2273
        resolution_idx: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
2274
2275
        dropout: float = 0.0,
        num_layers: int = 1,
2276
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
Patrick von Platen's avatar
Patrick von Platen committed
2277
2278
2279
2280
2281
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2282
2283
2284
2285
2286
2287
2288
2289
2290
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
Patrick von Platen's avatar
Patrick von Platen committed
2291
2292
2293
2294
2295
    ):
        super().__init__()
        resnets = []
        attentions = []

2296
        self.has_cross_attention = True
2297
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
2298

2299
2300
2301
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

Patrick von Platen's avatar
Patrick von Platen committed
2302
2303
2304
2305
2306
        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
2307
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
2320
2321
2322
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
2323
2324
                        num_attention_heads,
                        out_channels // num_attention_heads,
2325
                        in_channels=out_channels,
2326
                        num_layers=transformer_layers_per_block[i],
2327
2328
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
2329
                        use_linear_projection=use_linear_projection,
2330
                        only_cross_attention=only_cross_attention,
2331
                        upcast_attention=upcast_attention,
2332
                        attention_type=attention_type,
2333
2334
2335
2336
2337
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
2338
2339
                        num_attention_heads,
                        out_channels // num_attention_heads,
2340
2341
2342
2343
2344
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
2345
2346
2347
2348
2349
2350
2351
2352
2353
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2354
        self.gradient_checkpointing = False
2355
        self.resolution_idx = resolution_idx
2356
2357
2358

    def forward(
        self,
2359
2360
2361
2362
2363
2364
2365
2366
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2367
    ) -> torch.FloatTensor:
2368
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
2369
2370
2371
2372
2373
2374
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )
2375

Patrick von Platen's avatar
Patrick von Platen committed
2376
2377
2378
2379
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

Patrick von Platen's avatar
Patrick von Platen committed
2393
2394
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2395
2396
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
2397
                def create_custom_forward(module, return_dict=None):
2398
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
2399
2400
2401
2402
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
2403
2404
2405

                    return custom_forward

2406
2407
2408
2409
2410
2411
2412
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
2413
                hidden_states = attn(
2414
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
2415
2416
2417
2418
2419
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
2420
                )[0]
2421
            else:
2422
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
2423
2424
2425
2426
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
2427
2428
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
2429
2430
                    return_dict=False,
                )[0]
Patrick von Platen's avatar
Patrick von Platen committed
2431
2432
2433

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2434
                hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2435
2436
2437
2438

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2439
class UpBlock2D(nn.Module):
2440
2441
2442
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2443
2444
        prev_output_channel: int,
        out_channels: int,
2445
        temb_channels: int,
2446
        resolution_idx: Optional[int] = None,
2447
2448
2449
2450
2451
2452
2453
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2454
2455
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
2456
2457
2458
2459
2460
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2461
2462
2463
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2464
            resnets.append(
2465
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2466
2467
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
2482
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2483
2484
2485
        else:
            self.upsamplers = None

2486
        self.gradient_checkpointing = False
2487
        self.resolution_idx = resolution_idx
2488

2489
2490
2491
2492
2493
2494
2495
2496
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        scale: float = 1.0,
    ) -> torch.FloatTensor:
2497
2498
2499
2500
2501
2502
2503
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )

2504
2505
2506
2507
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

2521
2522
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2523
2524
2525
2526
2527
2528
2529
2530
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2531
2532
2533
2534
2535
2536
2537
2538
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2539
            else:
2540
                hidden_states = resnet(hidden_states, temb, scale=scale)
2541
2542
2543

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2544
                hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
2545
2546

        return hidden_states
2547
2548


2549
2550
2551
2552
2553
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
2554
        resolution_idx: Optional[int] = None,
2555
2556
2557
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
2558
        resnet_time_scale_shift: str = "default",  # default, spatial
2559
2560
2561
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2562
2563
2564
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        temb_channels: Optional[int] = None,
2565
2566
2567
2568
2569
2570
2571
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
            if resnet_time_scale_shift == "spatial":
                resnets.append(
                    ResnetBlockCondNorm2D(
                        in_channels=input_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm="spatial",
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                    )
                )
            else:
                resnets.append(
                    ResnetBlock2D(
                        in_channels=input_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                    )
2600
2601
2602
2603
2604
2605
2606
2607
2608
                )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2609
2610
        self.resolution_idx = resolution_idx

2611
2612
2613
    def forward(
        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
    ) -> torch.FloatTensor:
2614
        for resnet in self.resnets:
2615
            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
2616
2617
2618
2619
2620
2621
2622
2623

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


2624
2625
2626
2627
2628
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
2629
        resolution_idx: Optional[int] = None,
2630
2631
2632
2633
2634
2635
2636
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2637
2638
2639
2640
        attention_head_dim: int = 1,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        temb_channels: Optional[int] = None,
2641
2642
2643
2644
2645
    ):
        super().__init__()
        resnets = []
        attentions = []

2646
2647
2648
2649
2650
2651
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2652
2653
2654
        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
            if resnet_time_scale_shift == "spatial":
                resnets.append(
                    ResnetBlockCondNorm2D(
                        in_channels=input_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm="spatial",
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                    )
2668
                )
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
            else:
                resnets.append(
                    ResnetBlock2D(
                        in_channels=input_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                    )
                )

2685
            attentions.append(
2686
                Attention(
2687
                    out_channels,
2688
2689
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2690
2691
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
2692
                    norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
YiYi Xu's avatar
YiYi Xu committed
2693
                    spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
2694
2695
2696
2697
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2709
2710
        self.resolution_idx = resolution_idx

2711
2712
2713
    def forward(
        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
    ) -> torch.FloatTensor:
2714
        for resnet, attn in zip(self.resnets, self.attentions):
2715
2716
2717
            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs)
2718
2719
2720

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2721
                hidden_states = upsampler(hidden_states, scale=scale)
2722
2723
2724
2725

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2726
class AttnSkipUpBlock2D(nn.Module):
2727
2728
2729
2730
2731
2732
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
2733
        resolution_idx: Optional[int] = None,
2734
2735
2736
2737
2738
2739
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
2740
2741
2742
        attention_head_dim: int = 1,
        output_scale_factor: float = np.sqrt(2.0),
        add_upsample: bool = True,
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2753
                ResnetBlock2D(
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

2768
2769
2770
2771
2772
2773
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2774
        self.attentions.append(
2775
            Attention(
2776
                out_channels,
2777
2778
                heads=out_channels // attention_head_dim,
                dim_head=attention_head_dim,
2779
2780
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
2781
2782
2783
2784
2785
                norm_num_groups=32,
                residual_connection=True,
                bias=True,
                upcast_softmax=True,
                _from_deprecated_attn_block=True,
2786
2787
2788
2789
2790
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2791
            self.resnet_up = ResnetBlock2D(
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2803
                use_in_shortcut=True,
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

2818
2819
        self.resolution_idx = resolution_idx

2820
2821
2822
2823
2824
2825
2826
2827
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        skip_sample=None,
        scale: float = 1.0,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
2828
2829
2830
2831
2832
2833
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2834
            hidden_states = resnet(hidden_states, temb, scale=scale)
2835

2836
2837
        cross_attention_kwargs = {"scale": scale}
        hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs)
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

2851
            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
2852
2853
2854
2855

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
2856
class SkipUpBlock2D(nn.Module):
2857
2858
2859
2860
2861
2862
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
2863
        resolution_idx: Optional[int] = None,
2864
2865
2866
2867
2868
2869
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
2870
2871
2872
        output_scale_factor: float = np.sqrt(2.0),
        add_upsample: bool = True,
        upsample_padding: int = 1,
2873
2874
2875
2876
2877
2878
2879
2880
2881
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2882
                ResnetBlock2D(
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2899
            self.resnet_up = ResnetBlock2D(
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2911
                use_in_shortcut=True,
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

2926
2927
        self.resolution_idx = resolution_idx

2928
2929
2930
2931
2932
2933
2934
2935
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        skip_sample=None,
        scale: float = 1.0,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
2936
2937
2938
2939
2940
2941
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2942
            hidden_states = resnet(hidden_states, temb, scale=scale)
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

2956
            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
2957
2958

        return hidden_states, skip_sample
Will Berman's avatar
Will Berman committed
2959
2960
2961
2962
2963
2964
2965
2966
2967


class ResnetUpsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
2968
        resolution_idx: Optional[int] = None,
Will Berman's avatar
Will Berman committed
2969
2970
2971
2972
2973
2974
2975
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2976
2977
2978
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        skip_time_act: bool = False,
Will Berman's avatar
Will Berman committed
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2999
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
3019
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
3020
3021
3022
3023
3024
3025
3026
3027
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
3028
        self.resolution_idx = resolution_idx
Will Berman's avatar
Will Berman committed
3029

3030
3031
3032
3033
3034
3035
3036
3037
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        scale: float = 1.0,
    ) -> torch.FloatTensor:
Will Berman's avatar
Will Berman committed
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

3052
3053
3054
3055
3056
3057
3058
3059
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
3060
            else:
3061
                hidden_states = resnet(hidden_states, temb, scale=scale)
Will Berman's avatar
Will Berman committed
3062
3063
3064

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
3065
                hidden_states = upsampler(hidden_states, temb, scale=scale)
Will Berman's avatar
Will Berman committed
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076

        return hidden_states


class SimpleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
3077
        resolution_idx: Optional[int] = None,
Will Berman's avatar
Will Berman committed
3078
3079
3080
3081
3082
3083
3084
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
3085
3086
3087
3088
3089
3090
3091
        attention_head_dim: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        skip_time_act: bool = False,
        only_cross_attention: bool = False,
        cross_attention_norm: Optional[str] = None,
Will Berman's avatar
Will Berman committed
3092
3093
3094
3095
3096
3097
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
3098
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
3099

3100
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
3118
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
3119
3120
                )
            )
3121
3122
3123
3124
3125

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
3126
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
3127
                Attention(
Will Berman's avatar
Will Berman committed
3128
3129
3130
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
3131
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
3132
3133
3134
3135
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
3136
                    only_cross_attention=only_cross_attention,
3137
                    cross_attention_norm=cross_attention_norm,
3138
                    processor=processor,
Will Berman's avatar
Will Berman committed
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
3158
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
3159
3160
3161
3162
3163
3164
3165
3166
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
3167
        self.resolution_idx = resolution_idx
Will Berman's avatar
Will Berman committed
3168
3169
3170

    def forward(
        self,
3171
3172
3173
3174
3175
3176
3177
3178
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3179
    ) -> torch.FloatTensor:
3180
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
3181

3182
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
3194
3195
3196
3197
3198
3199
3200
        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

3201
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
3202

3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
ethansmith2000's avatar
ethansmith2000 committed
3213
                hidden_states = attn(
3214
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
3215
3216
3217
3218
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=mask,
                    **cross_attention_kwargs,
                )
3219
            else:
3220
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
3221
3222
3223
3224

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
3225
                    attention_mask=mask,
3226
3227
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
3228
3229
3230

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
3231
                hidden_states = upsampler(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
3232
3233

        return hidden_states
3234
3235
3236
3237
3238
3239
3240
3241


class KUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
3242
        resolution_idx: int,
3243
3244
3245
3246
3247
        dropout: float = 0.0,
        num_layers: int = 5,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: Optional[int] = 32,
3248
        add_upsample: bool = True,
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
    ):
        super().__init__()
        resnets = []
        k_in_channels = 2 * out_channels
        k_out_channels = in_channels
        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
3262
                ResnetBlockCondNorm2D(
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
                    in_channels=in_channels,
                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
3284
        self.resolution_idx = resolution_idx
3285

3286
3287
3288
3289
3290
3291
3292
3293
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        scale: float = 1.0,
    ) -> torch.FloatTensor:
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

3307
3308
3309
3310
3311
3312
3313
3314
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
3315
            else:
3316
                hidden_states = resnet(hidden_states, temb, scale=scale)
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class KCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
3331
        resolution_idx: int,
3332
3333
3334
3335
3336
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
3337
        attention_head_dim: int = 1,  # attention dim_head
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
        cross_attention_dim: int = 768,
        add_upsample: bool = True,
        upcast_attention: bool = False,
    ):
        super().__init__()
        resnets = []
        attentions = []

        is_first_block = in_channels == out_channels == temb_channels
        is_middle_block = in_channels != out_channels
        add_self_attention = True if is_first_block else False

        self.has_cross_attention = True
3351
        self.attention_head_dim = attention_head_dim
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369

        # in_channels, and out_channels for the block (k-unet)
        k_in_channels = out_channels if is_first_block else 2 * out_channels
        k_out_channels = in_channels

        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            if is_middle_block and (i == num_layers - 1):
                conv_2d_out_channels = k_out_channels
            else:
                conv_2d_out_channels = None

            resnets.append(
3370
                ResnetBlockCondNorm2D(
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
                    in_channels=in_channels,
                    out_channels=out_channels,
                    conv_2d_out_channels=conv_2d_out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    k_out_channels if (i == num_layers - 1) else out_channels,
3387
                    k_out_channels // attention_head_dim
3388
                    if (i == num_layers - 1)
3389
3390
                    else out_channels // attention_head_dim,
                    attention_head_dim,
3391
3392
3393
3394
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
3395
                    cross_attention_norm="layer_norm",
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
                    upcast_attention=upcast_attention,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
3409
        self.resolution_idx = resolution_idx
3410
3411
3412

    def forward(
        self,
3413
3414
3415
3416
3417
3418
3419
3420
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3421
    ) -> torch.FloatTensor:
3422
3423
3424
3425
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

3426
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

3439
3440
3441
3442
3443
3444
3445
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
3446
                hidden_states = attn(
3447
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
3448
3449
3450
3451
3452
3453
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                )
3454
            else:
3455
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
3456
3457
3458
3459
3460
3461
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
3462
                    encoder_attention_mask=encoder_attention_mask,
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


# can potentially later be renamed to `No-feed-forward` attention
class KAttentionBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
        attention_bias (`bool`, *optional*, defaults to `False`):
            Configure if the attention layers should contain a bias parameter.
        upcast_attention (`bool`, *optional*, defaults to `False`):
            Set to `True` to upcast the attention computation to `float32`.
        temb_channels (`int`, *optional*, defaults to 768):
            The number of channels in the token embedding.
        add_self_attention (`bool`, *optional*, defaults to `False`):
            Set to `True` to add self-attention to the block.
        cross_attention_norm (`str`, *optional*, defaults to `None`):
            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
        group_size (`int`, *optional*, defaults to 32):
            The number of groups to separate the channels into for group normalization.
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        upcast_attention: bool = False,
        temb_channels: int = 768,  # for ada_group_norm
        add_self_attention: bool = False,
3508
        cross_attention_norm: Optional[str] = None,
3509
3510
3511
3512
3513
3514
3515
3516
        group_size: int = 32,
    ):
        super().__init__()
        self.add_self_attention = add_self_attention

        # 1. Self-Attn
        if add_self_attention:
            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3517
            self.attn1 = Attention(
3518
3519
3520
3521
3522
3523
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                cross_attention_dim=None,
3524
                cross_attention_norm=None,
3525
3526
3527
3528
            )

        # 2. Cross-Attn
        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3529
        self.attn2 = Attention(
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            cross_attention_norm=cross_attention_norm,
        )

3540
    def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
3541
3542
        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)

3543
    def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
3544
3545
3546
3547
        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)

    def forward(
        self,
3548
3549
3550
3551
3552
3553
3554
3555
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        # TODO: mark emb as non-optional (self.norm2 requires it).
        #       requires assessing impact of change to positional param interface.
        emb: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3556
    ) -> torch.FloatTensor:
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        # 1. Self-Attention
        if self.add_self_attention:
            norm_hidden_states = self.norm1(hidden_states, emb)

            height, weight = norm_hidden_states.shape[2:]
            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=None,
3569
                attention_mask=attention_mask,
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
                **cross_attention_kwargs,
            )
            attn_output = self._to_4d(attn_output, height, weight)

            hidden_states = attn_output + hidden_states

        # 2. Cross-Attention/None
        norm_hidden_states = self.norm2(hidden_states, emb)

        height, weight = norm_hidden_states.shape[2:]
        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
3584
            attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
3585
3586
3587
3588
3589
3590
3591
            **cross_attention_kwargs,
        )
        attn_output = self._to_4d(attn_output, height, weight)

        hidden_states = attn_output + hidden_states

        return hidden_states