unet_2d_blocks.py 58.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import numpy as np
15
import torch
Patrick von Platen's avatar
Patrick von Platen committed
16
17
from torch import nn

18
from .attention import AttentionBlock, DualTransformer2DModel, Transformer2DModel
19
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
Patrick von Platen's avatar
Patrick von Platen committed
20
21


22
23
24
25
26
27
28
29
30
31
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
32
    resnet_groups=None,
33
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
34
    downsample_padding=None,
35
    dual_cross_attention=False,
36
):
Patrick von Platen's avatar
Patrick von Platen committed
37
38
39
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
40
41
42
43
44
45
46
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
47
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
48
            downsample_padding=downsample_padding,
49
        )
Patrick von Platen's avatar
Patrick von Platen committed
50
51
    elif down_block_type == "AttnDownBlock2D":
        return AttnDownBlock2D(
52
53
54
55
56
57
58
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
59
            resnet_groups=resnet_groups,
60
            downsample_padding=downsample_padding,
61
62
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
63
    elif down_block_type == "CrossAttnDownBlock2D":
64
        if cross_attention_dim is None:
65
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
66
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
70
71
72
73
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
74
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
75
            downsample_padding=downsample_padding,
76
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
77
            attn_num_head_channels=attn_num_head_channels,
78
            dual_cross_attention=dual_cross_attention,
Patrick von Platen's avatar
Patrick von Platen committed
79
        )
Patrick von Platen's avatar
Patrick von Platen committed
80
81
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
82
83
84
85
86
87
88
89
90
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
        )
Patrick von Platen's avatar
Patrick von Platen committed
91
92
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
93
94
95
96
97
98
99
100
101
102
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
        )
103
104
105
106
107
108
109
110
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
111
            resnet_groups=resnet_groups,
112
113
            downsample_padding=downsample_padding,
        )
Will Berman's avatar
Will Berman committed
114
115
116
117
118
119
120
121
122
123
124
125
126
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
        )
    raise ValueError(f"{down_block_type} does not exist.")
127
128
129
130
131
132


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
133
134
    out_channels,
    prev_output_channel,
135
136
137
138
139
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
140
    resnet_groups=None,
141
    cross_attention_dim=None,
142
    dual_cross_attention=False,
143
):
Patrick von Platen's avatar
Patrick von Platen committed
144
145
146
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
147
148
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
149
150
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
151
152
153
154
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
155
            resnet_groups=resnet_groups,
156
        )
Patrick von Platen's avatar
Patrick von Platen committed
157
    elif up_block_type == "CrossAttnUpBlock2D":
158
159
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
160
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
161
162
163
164
165
166
167
168
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
169
            resnet_groups=resnet_groups,
170
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
171
            attn_num_head_channels=attn_num_head_channels,
172
            dual_cross_attention=dual_cross_attention,
Patrick von Platen's avatar
Patrick von Platen committed
173
        )
Patrick von Platen's avatar
Patrick von Platen committed
174
175
    elif up_block_type == "AttnUpBlock2D":
        return AttnUpBlock2D(
176
177
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
178
179
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
180
181
182
183
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
184
            resnet_groups=resnet_groups,
185
186
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
187
188
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
189
190
191
192
193
194
195
196
197
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
Patrick von Platen's avatar
Patrick von Platen committed
198
199
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
200
201
202
203
204
205
206
207
208
209
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            attn_num_head_channels=attn_num_head_channels,
        )
210
211
212
213
214
215
216
217
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
218
            resnet_groups=resnet_groups,
219
        )
Will Berman's avatar
Will Berman committed
220
221
222
223
224
225
226
227
228
229
230
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            attn_num_head_channels=attn_num_head_channels,
        )
231
    raise ValueError(f"{up_block_type} does not exist.")
232
233


Patrick von Platen's avatar
Patrick von Platen committed
234
235
236
237
238
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
239
        dropout: float = 0.0,
240
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
241
242
243
244
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
245
        resnet_pre_norm: bool = True,
246
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
247
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
248
        output_scale_factor=1.0,
249
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
250
251
252
    ):
        super().__init__()

Patrick von Platen's avatar
Patrick von Platen committed
253
        self.attention_type = attention_type
254
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Patrick von Platen's avatar
Patrick von Platen committed
255

256
257
        # there is always at least one resnet
        resnets = [
258
            ResnetBlock2D(
259
260
261
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
262
                eps=resnet_eps,
263
264
265
266
267
268
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
269
            )
270
271
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
272

273
274
        for _ in range(num_layers):
            attentions.append(
275
                AttentionBlock(
276
277
278
                    in_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
279
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
280
                    norm_num_groups=resnet_groups,
281
                )
282
            )
283
            resnets.append(
284
                ResnetBlock2D(
285
286
287
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
288
                    eps=resnet_eps,
289
290
291
292
293
294
295
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
296
297
            )

298
299
300
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Patrick von Platen's avatar
Patrick von Platen committed
301
302
    def forward(self, hidden_states, temb=None, encoder_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
303
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Patrick von Platen's avatar
Patrick von Platen committed
304
305
            if self.attention_type == "default":
                hidden_states = attn(hidden_states)
306
            else:
Patrick von Platen's avatar
Patrick von Platen committed
307
308
                hidden_states = attn(hidden_states, encoder_states)
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
309

310
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
311

312

Patrick von Platen's avatar
Patrick von Platen committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=1.0,
        cross_attention_dim=1280,
329
        dual_cross_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
330
331
332
333
334
        **kwargs,
    ):
        super().__init__()

        self.attention_type = attention_type
335
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
336
337
338
339
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
340
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
377
378
                )
            resnets.append(
379
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )
        if slice_size is not None and slice_size > self.attn_num_head_channels:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )

        for attn in self.attentions:
            attn._set_attention_slice(slice_size)

411
412
413
414
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for attn in self.attentions:
            attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

Patrick von Platen's avatar
Patrick von Platen committed
415
416
417
    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
418
            hidden_states = attn(hidden_states, encoder_hidden_states).sample
Patrick von Platen's avatar
Patrick von Platen committed
419
420
421
422
423
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
424
class AttnDownBlock2D(nn.Module):
425
426
427
428
429
430
431
432
433
434
435
436
437
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
438
        attention_type="default",
439
        output_scale_factor=1.0,
440
        downsample_padding=1,
441
442
443
444
445
446
        add_downsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

Patrick von Platen's avatar
Patrick von Platen committed
447
448
        self.attention_type = attention_type

449
450
451
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
452
                ResnetBlock2D(
453
454
455
456
457
458
459
460
461
462
463
464
465
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
466
                AttentionBlock(
467
468
469
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
470
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
471
                    norm_num_groups=resnet_groups,
472
473
474
475
476
477
478
479
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
480
481
                [
                    Downsample2D(
482
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
483
484
                    )
                ]
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
506
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        attention_type="default",
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
525
        dual_cross_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
526
527
528
529
530
531
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.attention_type = attention_type
532
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
533
534
535
536

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
537
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
538
539
540
541
542
543
544
545
546
547
548
549
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
571
572
573
574
575
576
577
578
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
579
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
580
581
582
583
584
585
                    )
                ]
            )
        else:
            self.downsamplers = None

586
587
        self.gradient_checkpointing = False

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )
        if slice_size is not None and slice_size > self.attn_num_head_channels:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )

        for attn in self.attentions:
            attn._set_attention_slice(slice_size)

603
604
605
606
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for attn in self.attentions:
            attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

Patrick von Platen's avatar
Patrick von Platen committed
607
608
609
610
    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
611
612
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
613
                def create_custom_forward(module, return_dict=None):
614
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
615
616
617
618
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
619
620
621
622
623

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
624
625
                    create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
                )[0]
626
627
            else:
                hidden_states = resnet(hidden_states, temb)
Will Berman's avatar
Will Berman committed
628
                hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
629

Patrick von Platen's avatar
Patrick von Platen committed
630
631
632
633
634
635
636
637
638
639
640
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
641
class DownBlock2D(nn.Module):
642
643
644
645
646
647
648
649
650
651
652
653
654
655
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
656
        downsample_padding=1,
657
658
659
660
661
662
663
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
664
                ResnetBlock2D(
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
682
683
                [
                    Downsample2D(
684
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
685
686
                    )
                ]
687
688
689
690
            )
        else:
            self.downsamplers = None

691
692
        self.gradient_checkpointing = False

693
694
695
696
    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
697
698
699
700
701
702
703
704
705
706
707
708
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

709
710
711
712
713
714
715
716
717
718
719
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
742
                ResnetBlock2D(
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
762
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
804
                ResnetBlock2D(
805
806
807
808
809
810
811
812
813
814
815
816
817
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
818
                AttentionBlock(
819
820
821
822
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
823
                    norm_num_groups=resnet_groups,
824
825
826
827
828
829
830
831
832
833
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
834
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
853
class AttnSkipDownBlock2D(nn.Module):
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=np.sqrt(2.0),
        downsample_padding=1,
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        self.attention_type = attention_type

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
880
                ResnetBlock2D(
881
882
883
884
885
886
887
888
889
890
891
892
893
894
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
895
                AttentionBlock(
896
897
898
899
900
901
902
903
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
                )
            )

        if add_downsample:
904
            self.resnet_down = ResnetBlock2D(
905
906
907
908
909
910
911
912
913
914
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
915
                use_in_shortcut=True,
916
917
918
                down=True,
                kernel="fir",
            )
919
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
946
class SkipDownBlock2D(nn.Module):
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
968
                ResnetBlock2D(
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
984
            self.resnet_down = ResnetBlock2D(
985
986
987
988
989
990
991
992
993
994
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
995
                use_in_shortcut=True,
996
997
998
                down=True,
                kernel="fir",
            )
999
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1025
class AttnUpBlock2D(nn.Module):
1026
1027
1028
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1029
1030
        prev_output_channel: int,
        out_channels: int,
1031
1032
1033
1034
1035
1036
1037
1038
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
Patrick von Platen's avatar
Patrick von Platen committed
1039
        attention_type="default",
1040
1041
1042
1043
1044
1045
1046
1047
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

Patrick von Platen's avatar
Patrick von Platen committed
1048
1049
        self.attention_type = attention_type

1050
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1051
1052
1053
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1054
            resnets.append(
1055
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1069
                AttentionBlock(
Patrick von Platen's avatar
Patrick von Platen committed
1070
                    out_channels,
1071
1072
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
1073
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1074
                    norm_num_groups=resnet_groups,
1075
1076
1077
1078
1079
1080
1081
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1082
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
        else:
            self.upsamplers = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1103
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        attention_type="default",
        output_scale_factor=1.0,
        add_upsample=True,
1122
        dual_cross_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
1123
1124
1125
1126
1127
1128
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.attention_type = attention_type
1129
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
1130
1131
1132
1133
1134
1135

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
1136
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1170
1171
1172
1173
1174
1175
1176
1177
1178
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

1179
1180
        self.gradient_checkpointing = False

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )
        if slice_size is not None and slice_size > self.attn_num_head_channels:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )

        for attn in self.attentions:
            attn._set_attention_slice(slice_size)

1196
1197
        self.gradient_checkpointing = False

1198
1199
1200
1201
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for attn in self.attentions:
            attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

1202
1203
1204
1205
1206
1207
    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
1208
        upsample_size=None,
1209
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1210
1211
1212
1213
1214
1215
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1216
1217
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1218
                def create_custom_forward(module, return_dict=None):
1219
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1220
1221
1222
1223
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1224
1225
1226
1227
1228

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
1229
1230
                    create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
                )[0]
1231
1232
            else:
                hidden_states = resnet(hidden_states, temb)
Will Berman's avatar
Will Berman committed
1233
                hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
Patrick von Platen's avatar
Patrick von Platen committed
1234
1235
1236

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1237
                hidden_states = upsampler(hidden_states, upsample_size)
Patrick von Platen's avatar
Patrick von Platen committed
1238
1239
1240
1241

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1242
class UpBlock2D(nn.Module):
1243
1244
1245
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1246
1247
        prev_output_channel: int,
        out_channels: int,
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1263
1264
1265
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1266
            resnets.append(
1267
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1268
1269
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1284
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1285
1286
1287
        else:
            self.upsamplers = None

1288
1289
        self.gradient_checkpointing = False

1290
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
1291
1292
1293
1294
1295
1296
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)
1308
1309
1310

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1311
                hidden_states = upsampler(hidden_states, upsample_size)
1312
1313

        return hidden_states
1314
1315


1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1338
                ResnetBlock2D(
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1394
                ResnetBlock2D(
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1408
                AttentionBlock(
1409
1410
1411
1412
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1413
                    norm_num_groups=resnet_groups,
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1437
class AttnSkipUpBlock2D(nn.Module):
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=np.sqrt(2.0),
        upsample_padding=1,
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        self.attention_type = attention_type

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1467
                ResnetBlock2D(
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions.append(
1483
            AttentionBlock(
1484
1485
1486
1487
1488
1489
1490
1491
1492
                out_channels,
                num_head_channels=attn_num_head_channels,
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1493
            self.resnet_up = ResnetBlock2D(
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1505
                use_in_shortcut=True,
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        hidden_states = self.attentions[0](hidden_states)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1548
class SkipUpBlock2D(nn.Module):
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1573
                ResnetBlock2D(
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1590
            self.resnet_up = ResnetBlock2D(
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1602
                use_in_shortcut=True,
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample