unet_2d_blocks.py 102 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
from typing import Optional

16
import numpy as np
17
import torch
18
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
19
20
from torch import nn

21
from .attention import AdaGroupNorm
22
from .attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
23
from .dual_transformer_2d import DualTransformer2DModel
24
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
25
from .transformer_2d import Transformer2DModel
Patrick von Platen's avatar
Patrick von Platen committed
26
27


28
29
30
31
32
33
34
35
36
37
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
38
    resnet_groups=None,
39
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
40
    downsample_padding=None,
41
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
42
    use_linear_projection=False,
43
    only_cross_attention=False,
44
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
45
    resnet_time_scale_shift="default",
46
47
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
48
    cross_attention_norm=None,
49
):
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
53
54
55
56
57
58
59
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
60
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
61
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
62
63
64
65
66
67
68
69
70
71
72
73
74
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "ResnetDownsampleBlock2D":
        return ResnetDownsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
75
76
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
77
        )
Patrick von Platen's avatar
Patrick von Platen committed
78
79
    elif down_block_type == "AttnDownBlock2D":
        return AttnDownBlock2D(
80
81
82
83
84
85
86
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
87
            resnet_groups=resnet_groups,
88
            downsample_padding=downsample_padding,
89
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
90
            resnet_time_scale_shift=resnet_time_scale_shift,
91
        )
Patrick von Platen's avatar
Patrick von Platen committed
92
    elif down_block_type == "CrossAttnDownBlock2D":
93
        if cross_attention_dim is None:
94
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
95
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
96
97
98
99
100
101
102
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
103
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
104
            downsample_padding=downsample_padding,
105
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
106
            attn_num_head_channels=attn_num_head_channels,
107
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
108
            use_linear_projection=use_linear_projection,
109
            only_cross_attention=only_cross_attention,
110
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "SimpleCrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
        return SimpleCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
            attn_num_head_channels=attn_num_head_channels,
            resnet_time_scale_shift=resnet_time_scale_shift,
128
129
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
130
            only_cross_attention=only_cross_attention,
131
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
132
        )
Patrick von Platen's avatar
Patrick von Platen committed
133
134
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
135
136
137
138
139
140
141
142
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
143
            resnet_time_scale_shift=resnet_time_scale_shift,
144
        )
Patrick von Platen's avatar
Patrick von Platen committed
145
146
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
147
148
149
150
151
152
153
154
155
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
156
            resnet_time_scale_shift=resnet_time_scale_shift,
157
        )
158
159
160
161
162
163
164
165
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
166
            resnet_groups=resnet_groups,
167
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
168
            resnet_time_scale_shift=resnet_time_scale_shift,
169
        )
Will Berman's avatar
Will Berman committed
170
171
172
173
174
175
176
177
178
179
180
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
181
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
182
        )
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    elif down_block_type == "KDownBlock2D":
        return KDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif down_block_type == "KCrossAttnDownBlock2D":
        return KCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
            attn_num_head_channels=attn_num_head_channels,
            add_self_attention=True if not add_downsample else False,
        )
Will Berman's avatar
Will Berman committed
206
    raise ValueError(f"{down_block_type} does not exist.")
207
208
209
210
211
212


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
213
214
    out_channels,
    prev_output_channel,
215
216
217
218
219
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
220
    resnet_groups=None,
221
    cross_attention_dim=None,
222
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
223
    use_linear_projection=False,
224
    only_cross_attention=False,
225
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
226
    resnet_time_scale_shift="default",
227
228
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
229
    cross_attention_norm=None,
230
):
Patrick von Platen's avatar
Patrick von Platen committed
231
232
233
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
234
235
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
236
237
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
238
239
240
241
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
242
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "ResnetUpsampleBlock2D":
        return ResnetUpsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
257
258
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
259
        )
Patrick von Platen's avatar
Patrick von Platen committed
260
    elif up_block_type == "CrossAttnUpBlock2D":
261
262
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
263
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
264
265
266
267
268
269
270
271
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
272
            resnet_groups=resnet_groups,
273
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
274
            attn_num_head_channels=attn_num_head_channels,
275
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
276
            use_linear_projection=use_linear_projection,
277
            only_cross_attention=only_cross_attention,
278
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "SimpleCrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
        return SimpleCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
            attn_num_head_channels=attn_num_head_channels,
            resnet_time_scale_shift=resnet_time_scale_shift,
297
298
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
299
            only_cross_attention=only_cross_attention,
300
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
301
        )
Patrick von Platen's avatar
Patrick von Platen committed
302
303
    elif up_block_type == "AttnUpBlock2D":
        return AttnUpBlock2D(
304
305
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
306
307
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
308
309
310
311
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
312
            resnet_groups=resnet_groups,
313
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
314
            resnet_time_scale_shift=resnet_time_scale_shift,
315
        )
Patrick von Platen's avatar
Patrick von Platen committed
316
317
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
318
319
320
321
322
323
324
325
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
Will Berman's avatar
Will Berman committed
326
            resnet_time_scale_shift=resnet_time_scale_shift,
327
        )
Patrick von Platen's avatar
Patrick von Platen committed
328
329
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
330
331
332
333
334
335
336
337
338
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
339
            resnet_time_scale_shift=resnet_time_scale_shift,
340
        )
341
342
343
344
345
346
347
348
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
349
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
350
            resnet_time_scale_shift=resnet_time_scale_shift,
351
        )
Will Berman's avatar
Will Berman committed
352
353
354
355
356
357
358
359
360
361
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
362
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
363
        )
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    elif up_block_type == "KUpBlock2D":
        return KUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif up_block_type == "KCrossAttnUpBlock2D":
        return KCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
            attn_num_head_channels=attn_num_head_channels,
        )

387
    raise ValueError(f"{up_block_type} does not exist.")
388
389


Patrick von Platen's avatar
Patrick von Platen committed
390
391
392
393
394
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
395
        dropout: float = 0.0,
396
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
397
398
399
400
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
401
        resnet_pre_norm: bool = True,
Will Berman's avatar
Will Berman committed
402
        add_attention: bool = True,
403
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
404
405
406
        output_scale_factor=1.0,
    ):
        super().__init__()
407
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Will Berman's avatar
Will Berman committed
408
        self.add_attention = add_attention
Patrick von Platen's avatar
Patrick von Platen committed
409

410
411
        # there is always at least one resnet
        resnets = [
412
            ResnetBlock2D(
413
414
415
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
416
                eps=resnet_eps,
417
418
419
420
421
422
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
423
            )
424
425
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
426

427
        for _ in range(num_layers):
Will Berman's avatar
Will Berman committed
428
429
            if self.add_attention:
                attentions.append(
430
                    Attention(
Will Berman's avatar
Will Berman committed
431
                        in_channels,
432
433
                        heads=in_channels // attn_num_head_channels if attn_num_head_channels is not None else 1,
                        dim_head=attn_num_head_channels if attn_num_head_channels is not None else in_channels,
Will Berman's avatar
Will Berman committed
434
435
436
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
                        norm_num_groups=resnet_groups,
437
438
439
440
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
Will Berman's avatar
Will Berman committed
441
                    )
442
                )
Will Berman's avatar
Will Berman committed
443
444
445
            else:
                attentions.append(None)

446
            resnets.append(
447
                ResnetBlock2D(
448
449
450
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
451
                    eps=resnet_eps,
452
453
454
455
456
457
458
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
459
460
            )

461
462
463
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Will Berman's avatar
Will Berman committed
464
    def forward(self, hidden_states, temb=None):
Patrick von Platen's avatar
Patrick von Platen committed
465
        hidden_states = self.resnets[0](hidden_states, temb)
466
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
467
            if attn is not None:
Patrick von Platen's avatar
Patrick von Platen committed
468
469
                hidden_states = attn(hidden_states)
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
470

471
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
472

473

Patrick von Platen's avatar
Patrick von Platen committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        cross_attention_dim=1280,
489
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
490
        use_linear_projection=False,
491
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
492
493
494
    ):
        super().__init__()

495
        self.has_cross_attention = True
496
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
497
498
499
500
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
501
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
517
518
519
520
521
522
523
524
525
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
526
                        use_linear_projection=use_linear_projection,
527
                        upcast_attention=upcast_attention,
528
529
530
531
532
533
534
535
536
537
538
539
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
540
541
                )
            resnets.append(
542
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

559
560
561
    def forward(
        self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
    ):
Patrick von Platen's avatar
Patrick von Platen committed
562
563
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
564
565
566
567
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
568
569
                return_dict=False,
            )[0]
Will Berman's avatar
Will Berman committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


class UNetMidBlock2DSimpleCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        cross_attention_dim=1280,
590
        skip_time_act=False,
591
        only_cross_attention=False,
592
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    ):
        super().__init__()

        self.has_cross_attention = True

        self.attn_num_head_channels = attn_num_head_channels
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        self.num_heads = in_channels // self.attn_num_head_channels

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
616
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
617
618
619
620
621
            )
        ]
        attentions = []

        for _ in range(num_layers):
622
623
624
625
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
626
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
627
                Attention(
Will Berman's avatar
Will Berman committed
628
629
630
631
632
633
634
635
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
                    dim_head=attn_num_head_channels,
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
636
                    only_cross_attention=only_cross_attention,
637
                    cross_attention_norm=cross_attention_norm,
638
                    processor=processor,
Will Berman's avatar
Will Berman committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
653
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
654
655
656
657
658
659
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

660
661
662
663
    def forward(
        self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
664
665
666
667
668
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
669
                encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
670
                attention_mask=attention_mask,
671
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
672
673
674
            )

            # resnet
Patrick von Platen's avatar
Patrick von Platen committed
675
676
677
678
679
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
680
class AttnDownBlock2D(nn.Module):
681
682
683
684
685
686
687
688
689
690
691
692
693
694
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
695
        downsample_padding=1,
696
697
698
699
700
701
702
703
704
        add_downsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
705
                ResnetBlock2D(
706
707
708
709
710
711
712
713
714
715
716
717
718
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
719
                Attention(
720
                    out_channels,
721
722
                    heads=out_channels // attn_num_head_channels if attn_num_head_channels is not None else 1,
                    dim_head=attn_num_head_channels if attn_num_head_channels is not None else out_channels,
723
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
724
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
725
                    norm_num_groups=resnet_groups,
726
727
728
729
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
730
731
732
733
734
735
736
737
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
738
739
                [
                    Downsample2D(
740
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
741
742
                    )
                ]
743
744
745
746
            )
        else:
            self.downsamplers = None

747
    def forward(self, hidden_states, temb=None, upsample_size=None):
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
764
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
782
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
783
        use_linear_projection=False,
784
        only_cross_attention=False,
785
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
786
787
788
789
790
    ):
        super().__init__()
        resnets = []
        attentions = []

791
        self.has_cross_attention = True
792
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
793
794
795
796

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
797
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
798
799
800
801
802
803
804
805
806
807
808
809
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
810
811
812
813
814
815
816
817
818
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
819
                        use_linear_projection=use_linear_projection,
820
                        only_cross_attention=only_cross_attention,
821
                        upcast_attention=upcast_attention,
822
823
824
825
826
827
828
829
830
831
832
833
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
834
835
836
837
838
839
840
841
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
842
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
843
844
845
846
847
848
                    )
                ]
            )
        else:
            self.downsamplers = None

849
850
        self.gradient_checkpointing = False

851
852
853
    def forward(
        self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
    ):
Will Berman's avatar
Will Berman committed
854
        # TODO(Patrick, William) - attention mask is not used
Patrick von Platen's avatar
Patrick von Platen committed
855
856
857
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
858
859
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
860
                def create_custom_forward(module, return_dict=None):
861
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
862
863
864
865
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
866
867
868
869
870

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
871
872
873
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
874
                    cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
875
                )[0]
876
877
            else:
                hidden_states = resnet(hidden_states, temb)
878
879
880
881
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
882
883
                    return_dict=False,
                )[0]
884

885
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
886
887
888
889
890

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

891
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
892
893
894
895

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
896
class DownBlock2D(nn.Module):
897
898
899
900
901
902
903
904
905
906
907
908
909
910
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
911
        downsample_padding=1,
912
913
914
915
916
917
918
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
919
                ResnetBlock2D(
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
937
938
                [
                    Downsample2D(
939
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
940
941
                    )
                ]
942
943
944
945
            )
        else:
            self.downsamplers = None

946
947
        self.gradient_checkpointing = False

948
949
950
951
    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
952
953
954
955
956
957
958
959
960
961
962
963
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

964
            output_states = output_states + (hidden_states,)
965
966
967
968
969

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

970
            output_states = output_states + (hidden_states,)
971
972
973
974

        return hidden_states, output_states


975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
997
                ResnetBlock2D(
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1017
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1059
                ResnetBlock2D(
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1073
                Attention(
1074
                    out_channels,
1075
1076
                    heads=out_channels // attn_num_head_channels if attn_num_head_channels is not None else 1,
                    dim_head=attn_num_head_channels if attn_num_head_channels is not None else out_channels,
1077
1078
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1079
                    norm_num_groups=resnet_groups,
1080
1081
1082
1083
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1094
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1113
class AttnSkipDownBlock2D(nn.Module):
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=np.sqrt(2.0),
        downsample_padding=1,
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1137
                ResnetBlock2D(
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
1152
                Attention(
1153
                    out_channels,
1154
1155
                    heads=out_channels // attn_num_head_channels if attn_num_head_channels is not None else 1,
                    dim_head=attn_num_head_channels if attn_num_head_channels is not None else out_channels,
1156
1157
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
1158
1159
1160
1161
1162
                    norm_num_groups=32,
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1163
1164
1165
1166
                )
            )

        if add_downsample:
1167
            self.resnet_down = ResnetBlock2D(
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1178
                use_in_shortcut=True,
1179
1180
1181
                down=True,
                kernel="fir",
            )
1182
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1209
class SkipDownBlock2D(nn.Module):
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1231
                ResnetBlock2D(
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
1247
            self.resnet_down = ResnetBlock2D(
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1258
                use_in_shortcut=True,
1259
1260
1261
                down=True,
                kernel="fir",
            )
1262
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Will Berman's avatar
Will Berman committed
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
class ResnetDownsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
1303
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1322
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1342
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

1368
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1369
1370
1371
1372
1373

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, temb)

1374
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

        return hidden_states, output_states


class SimpleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_downsample=True,
1396
        skip_time_act=False,
1397
        only_cross_attention=False,
1398
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
    ):
        super().__init__()

        self.has_cross_attention = True

        resnets = []
        attentions = []

        self.attn_num_head_channels = attn_num_head_channels
        self.num_heads = out_channels // self.attn_num_head_channels

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1424
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1425
1426
                )
            )
1427
1428
1429
1430
1431

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1432
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1433
                Attention(
Will Berman's avatar
Will Berman committed
1434
1435
1436
1437
1438
1439
1440
1441
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
                    dim_head=attn_num_head_channels,
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1442
                    only_cross_attention=only_cross_attention,
1443
                    cross_attention_norm=cross_attention_norm,
1444
                    processor=processor,
Will Berman's avatar
Will Berman committed
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1464
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1465
1466
1467
1468
1469
1470
1471
1472
1473
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1474
1475
1476
    def forward(
        self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
    ):
Will Berman's avatar
Will Berman committed
1477
        output_states = ()
1478
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
1479
1480
1481
1482
1483
1484
1485
1486

        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            hidden_states = resnet(hidden_states, temb)

            # attn
            hidden_states = attn(
                hidden_states,
1487
                encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
1488
                attention_mask=attention_mask,
1489
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
1490
1491
            )

1492
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1493
1494
1495
1496
1497

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, temb)

1498
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1499
1500
1501
1502

        return hidden_states, output_states


1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
class KDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
        add_downsample=False,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            # YiYi's comments- might be able to use FirDownsample2D, look into details later
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


class KCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        cross_attention_dim: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_group_size: int = 32,
        add_downsample=True,
        attn_num_head_channels: int = 64,
        add_self_attention: bool = False,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    out_channels,
                    out_channels // attn_num_head_channels,
                    attn_num_head_channels,
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
1624
                    cross_attention_norm="layer_norm",
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
                    group_size=resnet_group_size,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
    ):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    attention_mask,
                    cross_attention_kwargs,
                )
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                )

            if self.downsamplers is None:
                output_states += (None,)
            else:
                output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1686
class AttnUpBlock2D(nn.Module):
1687
1688
1689
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1690
1691
        prev_output_channel: int,
        out_channels: int,
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1709
1710
1711
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1712
            resnets.append(
1713
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1714
1715
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1727
                Attention(
Patrick von Platen's avatar
Patrick von Platen committed
1728
                    out_channels,
1729
1730
                    heads=out_channels // attn_num_head_channels if attn_num_head_channels is not None else 1,
                    dim_head=attn_num_head_channels if attn_num_head_channels is not None else out_channels,
1731
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
1732
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1733
                    norm_num_groups=resnet_groups,
1734
1735
1736
1737
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1738
1739
1740
1741
1742
1743
1744
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1745
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1746
1747
1748
        else:
            self.upsamplers = None

1749
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1766
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
1784
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1785
        use_linear_projection=False,
1786
        only_cross_attention=False,
1787
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
1788
1789
1790
1791
1792
    ):
        super().__init__()
        resnets = []
        attentions = []

1793
        self.has_cross_attention = True
1794
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
1795
1796
1797
1798
1799
1800

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
1801
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
1814
1815
1816
1817
1818
1819
1820
1821
1822
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1823
                        use_linear_projection=use_linear_projection,
1824
                        only_cross_attention=only_cross_attention,
1825
                        upcast_attention=upcast_attention,
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1838
1839
1840
1841
1842
1843
1844
1845
1846
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

1847
1848
1849
1850
1851
1852
1853
1854
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
1855
        cross_attention_kwargs=None,
1856
        upsample_size=None,
Will Berman's avatar
Will Berman committed
1857
        attention_mask=None,
1858
    ):
Will Berman's avatar
Will Berman committed
1859
        # TODO(Patrick, William) - attention mask is not used
Patrick von Platen's avatar
Patrick von Platen committed
1860
1861
1862
1863
1864
1865
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1866
1867
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1868
                def create_custom_forward(module, return_dict=None):
1869
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1870
1871
1872
1873
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1874
1875
1876
1877
1878

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
1879
1880
1881
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
1882
                    cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
1883
                )[0]
1884
1885
            else:
                hidden_states = resnet(hidden_states, temb)
1886
1887
1888
1889
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1890
1891
                    return_dict=False,
                )[0]
Patrick von Platen's avatar
Patrick von Platen committed
1892
1893
1894

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1895
                hidden_states = upsampler(hidden_states, upsample_size)
Patrick von Platen's avatar
Patrick von Platen committed
1896
1897
1898
1899

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1900
class UpBlock2D(nn.Module):
1901
1902
1903
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1904
1905
        prev_output_channel: int,
        out_channels: int,
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1921
1922
1923
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1924
            resnets.append(
1925
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1926
1927
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1942
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1943
1944
1945
        else:
            self.upsamplers = None

1946
1947
        self.gradient_checkpointing = False

1948
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
1949
1950
1951
1952
1953
1954
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)
1966
1967
1968

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1969
                hidden_states = upsampler(hidden_states, upsample_size)
1970
1971

        return hidden_states
1972
1973


1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1996
                ResnetBlock2D(
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2052
                ResnetBlock2D(
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2066
                Attention(
2067
                    out_channels,
2068
2069
                    heads=out_channels // attn_num_head_channels if attn_num_head_channels is not None else 1,
                    dim_head=attn_num_head_channels if attn_num_head_channels is not None else out_channels,
2070
2071
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
2072
                    norm_num_groups=resnet_groups,
2073
2074
2075
2076
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2100
class AttnSkipUpBlock2D(nn.Module):
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=np.sqrt(2.0),
        upsample_padding=1,
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2127
                ResnetBlock2D(
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions.append(
2143
            Attention(
2144
                out_channels,
2145
2146
                heads=out_channels // attn_num_head_channels if attn_num_head_channels is not None else 1,
                dim_head=attn_num_head_channels if attn_num_head_channels is not None else out_channels,
2147
2148
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
2149
2150
2151
2152
2153
                norm_num_groups=32,
                residual_connection=True,
                bias=True,
                upcast_softmax=True,
                _from_deprecated_attn_block=True,
2154
2155
2156
2157
2158
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2159
            self.resnet_up = ResnetBlock2D(
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2171
                use_in_shortcut=True,
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        hidden_states = self.attentions[0](hidden_states)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
2214
class SkipUpBlock2D(nn.Module):
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2239
                ResnetBlock2D(
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2256
            self.resnet_up = ResnetBlock2D(
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2268
                use_in_shortcut=True,
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample
Will Berman's avatar
Will Berman committed
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324


class ResnetUpsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
2325
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2346
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2366
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, temb)

        return hidden_states


class SimpleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2420
        skip_time_act=False,
2421
        only_cross_attention=False,
2422
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
        self.attn_num_head_channels = attn_num_head_channels

        self.num_heads = out_channels // self.attn_num_head_channels

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2449
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2450
2451
                )
            )
2452
2453
2454
2455
2456

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
2457
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
2458
                Attention(
Will Berman's avatar
Will Berman committed
2459
2460
2461
2462
2463
2464
2465
2466
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
                    dim_head=attn_num_head_channels,
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
2467
                    only_cross_attention=only_cross_attention,
2468
                    cross_attention_norm=cross_attention_norm,
2469
                    processor=processor,
Will Berman's avatar
Will Berman committed
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2489
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
        upsample_size=None,
        attention_mask=None,
2507
        cross_attention_kwargs=None,
Will Berman's avatar
Will Berman committed
2508
    ):
2509
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

            # attn
            hidden_states = attn(
                hidden_states,
2522
                encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
2523
                attention_mask=attention_mask,
2524
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
2525
2526
2527
2528
2529
2530
2531
            )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, temb)

        return hidden_states
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675


class KUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 5,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: Optional[int] = 32,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        k_in_channels = 2 * out_channels
        k_out_channels = in_channels
        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class KCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
        attn_num_head_channels=1,  # attention dim_head
        cross_attention_dim: int = 768,
        add_upsample: bool = True,
        upcast_attention: bool = False,
    ):
        super().__init__()
        resnets = []
        attentions = []

        is_first_block = in_channels == out_channels == temb_channels
        is_middle_block = in_channels != out_channels
        add_self_attention = True if is_first_block else False

        self.has_cross_attention = True
        self.attn_num_head_channels = attn_num_head_channels

        # in_channels, and out_channels for the block (k-unet)
        k_in_channels = out_channels if is_first_block else 2 * out_channels
        k_out_channels = in_channels

        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            if is_middle_block and (i == num_layers - 1):
                conv_2d_out_channels = k_out_channels
            else:
                conv_2d_out_channels = None

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    conv_2d_out_channels=conv_2d_out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    k_out_channels if (i == num_layers - 1) else out_channels,
                    k_out_channels // attn_num_head_channels
                    if (i == num_layers - 1)
                    else out_channels // attn_num_head_channels,
                    attn_num_head_channels,
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
2676
                    cross_attention_norm="layer_norm",
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
                    upcast_attention=upcast_attention,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
        cross_attention_kwargs=None,
        upsample_size=None,
        attention_mask=None,
    ):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    attention_mask,
                    cross_attention_kwargs,
                )[0]
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


# can potentially later be renamed to `No-feed-forward` attention
class KAttentionBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        upcast_attention: bool = False,
        temb_channels: int = 768,  # for ada_group_norm
        add_self_attention: bool = False,
2771
        cross_attention_norm: Optional[str] = None,
2772
2773
2774
2775
2776
2777
2778
2779
        group_size: int = 32,
    ):
        super().__init__()
        self.add_self_attention = add_self_attention

        # 1. Self-Attn
        if add_self_attention:
            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
2780
            self.attn1 = Attention(
2781
2782
2783
2784
2785
2786
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                cross_attention_dim=None,
2787
                cross_attention_norm=None,
2788
2789
2790
2791
            )

        # 2. Cross-Attn
        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
2792
        self.attn2 = Attention(
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            cross_attention_norm=cross_attention_norm,
        )

    def _to_3d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)

    def _to_4d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)

    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        emb=None,
        attention_mask=None,
        cross_attention_kwargs=None,
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        # 1. Self-Attention
        if self.add_self_attention:
            norm_hidden_states = self.norm1(hidden_states, emb)

            height, weight = norm_hidden_states.shape[2:]
            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=None,
                **cross_attention_kwargs,
            )
            attn_output = self._to_4d(attn_output, height, weight)

            hidden_states = attn_output + hidden_states

        # 2. Cross-Attention/None
        norm_hidden_states = self.norm2(hidden_states, emb)

        height, weight = norm_hidden_states.shape[2:]
        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )
        attn_output = self._to_4d(attn_output, height, weight)

        hidden_states = attn_output + hidden_states

        return hidden_states