unet_2d_blocks.py 127 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional, Tuple
15

16
import numpy as np
17
import torch
18
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
19
20
from torch import nn

21
from ..utils import is_torch_version, logging
22
from ..utils.torch_utils import apply_freeu
23
from .activations import get_activation
24
from .attention import AdaGroupNorm
25
from .attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
26
from .dual_transformer_2d import DualTransformer2DModel
27
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
28
from .transformer_2d import Transformer2DModel
Patrick von Platen's avatar
Patrick von Platen committed
29
30


31
32
33
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


34
35
36
37
38
39
40
41
42
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
43
    transformer_layers_per_block=1,
44
    num_attention_heads=None,
45
    resnet_groups=None,
46
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
47
    downsample_padding=None,
48
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
49
    use_linear_projection=False,
50
    only_cross_attention=False,
51
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
52
    resnet_time_scale_shift="default",
53
    attention_type="default",
54
55
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
56
    cross_attention_norm=None,
57
    attention_head_dim=None,
58
    downsample_type=None,
59
    dropout=0.0,
60
):
61
62
63
64
65
66
67
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
68
69
70
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
71
72
73
74
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
75
            dropout=dropout,
76
77
78
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
79
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
80
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
81
82
83
84
85
86
87
88
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "ResnetDownsampleBlock2D":
        return ResnetDownsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
89
            dropout=dropout,
Will Berman's avatar
Will Berman committed
90
91
92
93
94
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
95
96
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
97
        )
Patrick von Platen's avatar
Patrick von Platen committed
98
    elif down_block_type == "AttnDownBlock2D":
99
100
101
102
        if add_downsample is False:
            downsample_type = None
        else:
            downsample_type = downsample_type or "conv"  # default to 'conv'
Patrick von Platen's avatar
Patrick von Platen committed
103
        return AttnDownBlock2D(
104
105
106
107
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
108
            dropout=dropout,
109
110
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
111
            resnet_groups=resnet_groups,
112
            downsample_padding=downsample_padding,
113
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
114
            resnet_time_scale_shift=resnet_time_scale_shift,
115
            downsample_type=downsample_type,
116
        )
Patrick von Platen's avatar
Patrick von Platen committed
117
    elif down_block_type == "CrossAttnDownBlock2D":
118
        if cross_attention_dim is None:
119
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
120
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
121
            num_layers=num_layers,
122
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
126
            dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
130
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
131
            downsample_padding=downsample_padding,
132
            cross_attention_dim=cross_attention_dim,
133
            num_attention_heads=num_attention_heads,
134
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
135
            use_linear_projection=use_linear_projection,
136
            only_cross_attention=only_cross_attention,
137
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
138
            resnet_time_scale_shift=resnet_time_scale_shift,
139
            attention_type=attention_type,
Will Berman's avatar
Will Berman committed
140
141
142
143
144
145
146
147
148
        )
    elif down_block_type == "SimpleCrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
        return SimpleCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
149
            dropout=dropout,
Will Berman's avatar
Will Berman committed
150
151
152
153
154
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
155
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
156
            resnet_time_scale_shift=resnet_time_scale_shift,
157
158
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
159
            only_cross_attention=only_cross_attention,
160
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
161
        )
Patrick von Platen's avatar
Patrick von Platen committed
162
163
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
164
165
166
167
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
168
            dropout=dropout,
169
170
171
172
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
173
            resnet_time_scale_shift=resnet_time_scale_shift,
174
        )
Patrick von Platen's avatar
Patrick von Platen committed
175
176
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
177
178
179
180
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
181
            dropout=dropout,
182
183
184
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
185
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
186
            resnet_time_scale_shift=resnet_time_scale_shift,
187
        )
188
189
190
191
192
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
193
            dropout=dropout,
194
195
196
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
197
            resnet_groups=resnet_groups,
198
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
199
            resnet_time_scale_shift=resnet_time_scale_shift,
200
        )
Will Berman's avatar
Will Berman committed
201
202
203
204
205
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
206
            dropout=dropout,
Will Berman's avatar
Will Berman committed
207
208
209
210
211
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
212
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
213
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
214
        )
215
216
217
218
219
220
    elif down_block_type == "KDownBlock2D":
        return KDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
221
            dropout=dropout,
222
223
224
225
226
227
228
229
230
231
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif down_block_type == "KCrossAttnDownBlock2D":
        return KCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
232
            dropout=dropout,
233
234
235
236
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
237
            attention_head_dim=attention_head_dim,
238
239
            add_self_attention=True if not add_downsample else False,
        )
Will Berman's avatar
Will Berman committed
240
    raise ValueError(f"{down_block_type} does not exist.")
241
242
243
244
245
246


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
247
248
    out_channels,
    prev_output_channel,
249
250
251
252
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
253
    resolution_idx=None,
254
    transformer_layers_per_block=1,
255
    num_attention_heads=None,
256
    resnet_groups=None,
257
    cross_attention_dim=None,
258
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
259
    use_linear_projection=False,
260
    only_cross_attention=False,
261
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
262
    resnet_time_scale_shift="default",
263
    attention_type="default",
264
265
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
266
    cross_attention_norm=None,
267
    attention_head_dim=None,
268
    upsample_type=None,
269
    dropout=0.0,
270
):
271
272
273
274
275
276
277
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
278
279
280
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
281
282
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
283
284
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
285
            temb_channels=temb_channels,
286
            resolution_idx=resolution_idx,
287
            dropout=dropout,
288
289
290
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
291
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
292
293
294
295
296
297
298
299
300
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "ResnetUpsampleBlock2D":
        return ResnetUpsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
301
            resolution_idx=resolution_idx,
302
            dropout=dropout,
Will Berman's avatar
Will Berman committed
303
304
305
306
307
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
308
309
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
310
        )
Patrick von Platen's avatar
Patrick von Platen committed
311
    elif up_block_type == "CrossAttnUpBlock2D":
312
313
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
314
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
315
            num_layers=num_layers,
316
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
317
318
319
320
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
321
            resolution_idx=resolution_idx,
322
            dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
323
324
325
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
326
            resnet_groups=resnet_groups,
327
            cross_attention_dim=cross_attention_dim,
328
            num_attention_heads=num_attention_heads,
329
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
330
            use_linear_projection=use_linear_projection,
331
            only_cross_attention=only_cross_attention,
332
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
333
            resnet_time_scale_shift=resnet_time_scale_shift,
334
            attention_type=attention_type,
Will Berman's avatar
Will Berman committed
335
336
337
338
339
340
341
342
343
344
        )
    elif up_block_type == "SimpleCrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
        return SimpleCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
345
            resolution_idx=resolution_idx,
346
            dropout=dropout,
Will Berman's avatar
Will Berman committed
347
348
349
350
351
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
352
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
353
            resnet_time_scale_shift=resnet_time_scale_shift,
354
355
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
356
            only_cross_attention=only_cross_attention,
357
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
358
        )
Patrick von Platen's avatar
Patrick von Platen committed
359
    elif up_block_type == "AttnUpBlock2D":
360
361
362
363
364
        if add_upsample is False:
            upsample_type = None
        else:
            upsample_type = upsample_type or "conv"  # default to 'conv'

Patrick von Platen's avatar
Patrick von Platen committed
365
        return AttnUpBlock2D(
366
367
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
368
369
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
370
            temb_channels=temb_channels,
371
            resolution_idx=resolution_idx,
372
            dropout=dropout,
373
374
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
375
            resnet_groups=resnet_groups,
376
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
377
            resnet_time_scale_shift=resnet_time_scale_shift,
378
            upsample_type=upsample_type,
379
        )
Patrick von Platen's avatar
Patrick von Platen committed
380
381
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
382
383
384
385
386
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
387
            resolution_idx=resolution_idx,
388
            dropout=dropout,
389
390
391
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
Will Berman's avatar
Will Berman committed
392
            resnet_time_scale_shift=resnet_time_scale_shift,
393
        )
Patrick von Platen's avatar
Patrick von Platen committed
394
395
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
396
397
398
399
400
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
401
            resolution_idx=resolution_idx,
402
            dropout=dropout,
403
404
405
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
406
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
407
            resnet_time_scale_shift=resnet_time_scale_shift,
408
        )
409
410
411
412
413
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
414
            resolution_idx=resolution_idx,
415
            dropout=dropout,
416
417
418
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
419
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
420
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
421
            temb_channels=temb_channels,
422
        )
Will Berman's avatar
Will Berman committed
423
424
425
426
427
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
428
            resolution_idx=resolution_idx,
429
            dropout=dropout,
Will Berman's avatar
Will Berman committed
430
431
432
433
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
434
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
435
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
436
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
437
        )
438
439
440
441
442
443
    elif up_block_type == "KUpBlock2D":
        return KUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
444
            resolution_idx=resolution_idx,
445
            dropout=dropout,
446
447
448
449
450
451
452
453
454
455
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif up_block_type == "KCrossAttnUpBlock2D":
        return KCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
456
            resolution_idx=resolution_idx,
457
            dropout=dropout,
458
459
460
461
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
462
            attention_head_dim=attention_head_dim,
463
464
        )

465
    raise ValueError(f"{up_block_type} does not exist.")
466
467


468
class AutoencoderTinyBlock(nn.Module):
469
    """
Patrick von Platen's avatar
Patrick von Platen committed
470
471
    Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
    blocks.
472
473
474
475

    Args:
        in_channels (`int`): The number of input channels.
        out_channels (`int`): The number of output channels.
Patrick von Platen's avatar
Patrick von Platen committed
476
477
        act_fn (`str`):
            ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
478
479

    Returns:
Patrick von Platen's avatar
Patrick von Platen committed
480
481
        `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
        `out_channels`.
482
483
    """

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    def __init__(self, in_channels: int, out_channels: int, act_fn: str):
        super().__init__()
        act_fn = get_activation(act_fn)
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
        )
        self.skip = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
            if in_channels != out_channels
            else nn.Identity()
        )
        self.fuse = nn.ReLU()

    def forward(self, x):
        return self.fuse(self.conv(x) + self.skip(x))


Patrick von Platen's avatar
Patrick von Platen committed
505
class UNetMidBlock2D(nn.Module):
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    """
    A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.

    Args:
        in_channels (`int`): The number of input channels.
        temb_channels (`int`): The number of temporal embedding channels.
        dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
        num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
        resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
        resnet_time_scale_shift (`str`, *optional*, defaults to `default`): The type of normalization to apply to the time embeddings. This can help to improve the performance of the model on tasks with long-range temporal dependencies.
        resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
        resnet_groups (`int`, *optional*, defaults to 32): The number of groups to use in the group normalization layers of the resnet blocks.
        attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
        resnet_pre_norm (`bool`, *optional*, defaults to `True`): Whether to use pre-normalization for the resnet blocks.
        add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
        attention_head_dim (`int`, *optional*, defaults to 1): Dimension of a single attention head. The number of attention heads is determined based on this value and the number of input channels.
        output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.

    Returns:
        `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, in_channels, height, width)`.

    """

Patrick von Platen's avatar
Patrick von Platen committed
529
530
531
532
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
533
        dropout: float = 0.0,
534
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
535
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
536
        resnet_time_scale_shift: str = "default",  # default, spatial
Patrick von Platen's avatar
Patrick von Platen committed
537
538
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
539
        attn_groups: Optional[int] = None,
540
        resnet_pre_norm: bool = True,
Will Berman's avatar
Will Berman committed
541
        add_attention: bool = True,
542
        attention_head_dim=1,
Patrick von Platen's avatar
Patrick von Platen committed
543
544
545
        output_scale_factor=1.0,
    ):
        super().__init__()
546
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Will Berman's avatar
Will Berman committed
547
        self.add_attention = add_attention
Patrick von Platen's avatar
Patrick von Platen committed
548

549
550
551
        if attn_groups is None:
            attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None

552
553
        # there is always at least one resnet
        resnets = [
554
            ResnetBlock2D(
555
556
557
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
558
                eps=resnet_eps,
559
560
561
562
563
564
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
565
            )
566
567
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
568

569
570
571
572
573
574
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
            )
            attention_head_dim = in_channels

575
        for _ in range(num_layers):
Will Berman's avatar
Will Berman committed
576
577
            if self.add_attention:
                attentions.append(
578
                    Attention(
Will Berman's avatar
Will Berman committed
579
                        in_channels,
580
581
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
582
583
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
584
                        norm_num_groups=attn_groups,
YiYi Xu's avatar
YiYi Xu committed
585
                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
586
587
588
589
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
Will Berman's avatar
Will Berman committed
590
                    )
591
                )
Will Berman's avatar
Will Berman committed
592
593
594
            else:
                attentions.append(None)

595
            resnets.append(
596
                ResnetBlock2D(
597
598
599
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
600
                    eps=resnet_eps,
601
602
603
604
605
606
607
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
608
609
            )

610
611
612
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Will Berman's avatar
Will Berman committed
613
    def forward(self, hidden_states, temb=None):
Patrick von Platen's avatar
Patrick von Platen committed
614
        hidden_states = self.resnets[0](hidden_states, temb)
615
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
616
            if attn is not None:
YiYi Xu's avatar
YiYi Xu committed
617
                hidden_states = attn(hidden_states, temb=temb)
Patrick von Platen's avatar
Patrick von Platen committed
618
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
619

620
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
621

622

Patrick von Platen's avatar
Patrick von Platen committed
623
624
625
626
627
628
629
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
630
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
631
632
633
634
635
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
636
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
637
638
        output_scale_factor=1.0,
        cross_attention_dim=1280,
639
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
640
        use_linear_projection=False,
641
        upcast_attention=False,
642
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
643
644
645
    ):
        super().__init__()

646
        self.has_cross_attention = True
647
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
648
649
650
651
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
652
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
668
669
670
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
671
672
                        num_attention_heads,
                        in_channels // num_attention_heads,
673
                        in_channels=in_channels,
674
                        num_layers=transformer_layers_per_block,
675
676
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
677
                        use_linear_projection=use_linear_projection,
678
                        upcast_attention=upcast_attention,
679
                        attention_type=attention_type,
680
681
682
683
684
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
685
686
                        num_attention_heads,
                        in_channels // num_attention_heads,
687
688
689
690
691
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
692
693
                )
            resnets.append(
694
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

711
712
        self.gradient_checkpointing = False

713
    def forward(
714
715
716
717
718
719
720
721
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
722
723
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
724
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
725
726
727
728
729
730
731
732
733
734
735
736
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
ethansmith2000's avatar
ethansmith2000 committed
737
                hidden_states = attn(
738
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
739
740
741
742
743
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
                )[0]
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
760
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

        return hidden_states


class UNetMidBlock2DSimpleCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
777
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
778
779
        output_scale_factor=1.0,
        cross_attention_dim=1280,
780
        skip_time_act=False,
781
        only_cross_attention=False,
782
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
783
784
785
786
787
    ):
        super().__init__()

        self.has_cross_attention = True

788
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
789
790
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

791
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
792
793
794
795
796
797
798
799
800
801
802
803
804
805

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
806
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
807
808
809
810
811
            )
        ]
        attentions = []

        for _ in range(num_layers):
812
813
814
815
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
816
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
817
                Attention(
Will Berman's avatar
Will Berman committed
818
819
820
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
821
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
822
823
824
825
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
826
                    only_cross_attention=only_cross_attention,
827
                    cross_attention_norm=cross_attention_norm,
828
                    processor=processor,
Will Berman's avatar
Will Berman committed
829
830
831
832
833
834
835
836
837
838
839
840
841
842
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
843
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
844
845
846
847
848
849
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

850
    def forward(
851
852
853
854
855
856
857
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
858
859
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
860
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
861
862
863
864
865
866
867
868
869
870
871
872

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

873
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
874
875
876
877
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
878
                encoder_hidden_states=encoder_hidden_states,
879
                attention_mask=mask,
880
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
881
882
883
            )

            # resnet
884
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
885
886
887
888

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
889
class AttnDownBlock2D(nn.Module):
890
891
892
893
894
895
896
897
898
899
900
901
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
902
        attention_head_dim=1,
903
        output_scale_factor=1.0,
904
        downsample_padding=1,
905
        downsample_type="conv",
906
907
908
909
    ):
        super().__init__()
        resnets = []
        attentions = []
910
        self.downsample_type = downsample_type
911

912
913
914
915
916
917
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

918
919
920
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
921
                ResnetBlock2D(
922
923
924
925
926
927
928
929
930
931
932
933
934
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
935
                Attention(
936
                    out_channels,
937
938
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
939
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
940
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
941
                    norm_num_groups=resnet_groups,
942
943
944
945
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
946
947
948
949
950
951
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

952
        if downsample_type == "conv":
953
            self.downsamplers = nn.ModuleList(
954
955
                [
                    Downsample2D(
956
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
957
958
                    )
                ]
959
            )
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
        elif downsample_type == "resnet":
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        down=True,
                    )
                ]
            )
978
979
980
        else:
            self.downsamplers = None

981
982
983
984
985
    def forward(self, hidden_states, temb=None, upsample_size=None, cross_attention_kwargs=None):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        lora_scale = cross_attention_kwargs.get("scale", 1.0)

986
987
988
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
989
990
991
            cross_attention_kwargs.update({"scale": lora_scale})
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
992
            output_states = output_states + (hidden_states,)
993
994
995

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
996
                if self.downsample_type == "resnet":
997
                    hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale)
998
                else:
999
                    hidden_states = downsampler(hidden_states, scale=lora_scale)
1000
1001
1002
1003
1004
1005

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1006
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
1007
1008
1009
1010
1011
1012
1013
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
1014
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
1015
1016
1017
1018
1019
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1020
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
1021
1022
1023
1024
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
1025
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1026
        use_linear_projection=False,
1027
        only_cross_attention=False,
1028
        upcast_attention=False,
1029
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
1030
1031
1032
1033
1034
    ):
        super().__init__()
        resnets = []
        attentions = []

1035
        self.has_cross_attention = True
1036
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
1037
1038
1039
1040

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1041
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
1054
1055
1056
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1057
1058
                        num_attention_heads,
                        out_channels // num_attention_heads,
1059
                        in_channels=out_channels,
1060
                        num_layers=transformer_layers_per_block,
1061
1062
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1063
                        use_linear_projection=use_linear_projection,
1064
                        only_cross_attention=only_cross_attention,
1065
                        upcast_attention=upcast_attention,
1066
                        attention_type=attention_type,
1067
1068
1069
1070
1071
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1072
1073
                        num_attention_heads,
                        out_channels // num_attention_heads,
1074
1075
1076
1077
1078
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1079
1080
1081
1082
1083
1084
1085
1086
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1087
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1088
1089
1090
1091
1092
1093
                    )
                ]
            )
        else:
            self.downsamplers = None

1094
1095
        self.gradient_checkpointing = False

1096
    def forward(
1097
1098
1099
1100
1101
1102
1103
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
1104
        additional_residuals=None,
1105
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1106
1107
        output_states = ()

1108
1109
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

Will Berman's avatar
Will Berman committed
1110
1111
1112
        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
1113
1114
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1115
                def create_custom_forward(module, return_dict=None):
1116
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1117
1118
1119
1120
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1121
1122
1123

                    return custom_forward

1124
1125
1126
1127
1128
1129
1130
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1131
                hidden_states = attn(
1132
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1133
1134
1135
1136
1137
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1138
                )[0]
1139
            else:
1140
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1141
1142
1143
1144
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1145
1146
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1147
1148
                    return_dict=False,
                )[0]
1149

Will Berman's avatar
Will Berman committed
1150
1151
1152
1153
            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

1154
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1155
1156
1157

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1158
                hidden_states = downsampler(hidden_states, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1159

1160
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1161
1162
1163
1164

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1165
class DownBlock2D(nn.Module):
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
1180
        downsample_padding=1,
1181
1182
1183
1184
1185
1186
1187
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1188
                ResnetBlock2D(
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
1206
1207
                [
                    Downsample2D(
1208
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1209
1210
                    )
                ]
1211
1212
1213
1214
            )
        else:
            self.downsamplers = None

1215
1216
        self.gradient_checkpointing = False

1217
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
1218
1219
1220
        output_states = ()

        for resnet in self.resnets:
1221
1222
1223
1224
1225
1226
1227
1228
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1229
1230
1231
1232
1233
1234
1235
1236
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1237
            else:
1238
                hidden_states = resnet(hidden_states, temb, scale=scale)
1239

1240
            output_states = output_states + (hidden_states,)
1241
1242
1243

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1244
                hidden_states = downsampler(hidden_states, scale=scale)
1245

1246
            output_states = output_states + (hidden_states,)
1247
1248
1249
1250

        return hidden_states, output_states


1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1273
                ResnetBlock2D(
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1293
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1294
1295
1296
1297
1298
1299
                    )
                ]
            )
        else:
            self.downsamplers = None

1300
    def forward(self, hidden_states, scale: float = 1.0):
1301
        for resnet in self.resnets:
1302
            hidden_states = resnet(hidden_states, temb=None, scale=scale)
1303
1304
1305

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1306
                hidden_states = downsampler(hidden_states, scale)
1307
1308
1309
1310

        return hidden_states


1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1323
        attention_head_dim=1,
1324
1325
1326
1327
1328
1329
1330
1331
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

1332
1333
1334
1335
1336
1337
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1338
1339
1340
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1341
                ResnetBlock2D(
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1355
                Attention(
1356
                    out_channels,
1357
1358
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1359
1360
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1361
                    norm_num_groups=resnet_groups,
1362
1363
1364
1365
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1376
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1377
1378
1379
1380
1381
1382
                    )
                ]
            )
        else:
            self.downsamplers = None

1383
    def forward(self, hidden_states, scale: float = 1.0):
1384
        for resnet, attn in zip(self.resnets, self.attentions):
1385
1386
1387
            hidden_states = resnet(hidden_states, temb=None, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1388
1389
1390

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1391
                hidden_states = downsampler(hidden_states, scale)
1392
1393
1394
1395

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1396
class AttnSkipDownBlock2D(nn.Module):
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
1408
        attention_head_dim=1,
1409
1410
1411
1412
1413
1414
1415
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

1416
1417
1418
1419
1420
1421
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1422
1423
1424
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1425
                ResnetBlock2D(
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
1440
                Attention(
1441
                    out_channels,
1442
1443
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1444
1445
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
1446
1447
1448
1449
1450
                    norm_num_groups=32,
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1451
1452
1453
1454
                )
            )

        if add_downsample:
1455
            self.resnet_down = ResnetBlock2D(
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1466
                use_in_shortcut=True,
1467
1468
1469
                down=True,
                kernel="fir",
            )
1470
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1471
1472
1473
1474
1475
1476
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

1477
    def forward(self, hidden_states, temb=None, skip_sample=None, scale: float = 1.0):
1478
1479
1480
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
1481
1482
1483
            hidden_states = resnet(hidden_states, temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1484
1485
1486
            output_states += (hidden_states,)

        if self.downsamplers is not None:
1487
            hidden_states = self.resnet_down(hidden_states, temb, scale=scale)
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1498
class SkipDownBlock2D(nn.Module):
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1520
                ResnetBlock2D(
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
1536
            self.resnet_down = ResnetBlock2D(
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1547
                use_in_shortcut=True,
1548
1549
1550
                down=True,
                kernel="fir",
            )
1551
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1552
1553
1554
1555
1556
1557
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

1558
    def forward(self, hidden_states, temb=None, skip_sample=None, scale: float = 1.0):
1559
1560
1561
        output_states = ()

        for resnet in self.resnets:
1562
            hidden_states = resnet(hidden_states, temb, scale)
1563
1564
1565
            output_states += (hidden_states,)

        if self.downsamplers is not None:
1566
            hidden_states = self.resnet_down(hidden_states, temb, scale)
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Will Berman's avatar
Will Berman committed
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
class ResnetDownsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
1592
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1611
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1631
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1632
1633
1634
1635
1636
1637
1638
1639
1640
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1641
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
Will Berman's avatar
Will Berman committed
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1653
1654
1655
1656
1657
1658
1659
1660
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
1661
            else:
1662
                hidden_states = resnet(hidden_states, temb, scale)
Will Berman's avatar
Will Berman committed
1663

1664
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1665
1666
1667

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1668
                hidden_states = downsampler(hidden_states, temb, scale)
Will Berman's avatar
Will Berman committed
1669

1670
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687

        return hidden_states, output_states


class SimpleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1688
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
1689
1690
1691
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_downsample=True,
1692
        skip_time_act=False,
1693
        only_cross_attention=False,
1694
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
1695
1696
1697
1698
1699
1700
1701
1702
    ):
        super().__init__()

        self.has_cross_attention = True

        resnets = []
        attentions = []

1703
1704
        self.attention_head_dim = attention_head_dim
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1720
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1721
1722
                )
            )
1723
1724
1725
1726
1727

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1728
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1729
                Attention(
Will Berman's avatar
Will Berman committed
1730
1731
1732
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
1733
                    dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
1734
1735
1736
1737
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1738
                    only_cross_attention=only_cross_attention,
1739
                    cross_attention_norm=cross_attention_norm,
1740
                    processor=processor,
Will Berman's avatar
Will Berman committed
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1760
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1761
1762
1763
1764
1765
1766
1767
1768
1769
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1770
    def forward(
1771
1772
1773
1774
1775
1776
1777
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1778
    ):
Will Berman's avatar
Will Berman committed
1779
        output_states = ()
1780
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
1781

1782
1783
        lora_scale = cross_attention_kwargs.get("scale", 1.0)

1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
1795
        for resnet, attn in zip(self.resnets, self.attentions):
1796
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
1797

1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
ethansmith2000's avatar
ethansmith2000 committed
1808
                hidden_states = attn(
1809
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1810
1811
1812
1813
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=mask,
                    **cross_attention_kwargs,
                )
1814
            else:
1815
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1816
1817
1818
1819

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
1820
                    attention_mask=mask,
1821
1822
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
1823

1824
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1825
1826
1827

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1828
                hidden_states = downsampler(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
1829

1830
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1831
1832
1833
1834

        return hidden_states, output_states


1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
class KDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
        add_downsample=False,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            # YiYi's comments- might be able to use FirDownsample2D, look into details later
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1881
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1893
1894
1895
1896
1897
1898
1899
1900
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1901
            else:
1902
                hidden_states = resnet(hidden_states, temb, scale)
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


class KCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        cross_attention_dim: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_group_size: int = 32,
        add_downsample=True,
1924
        attention_head_dim: int = 64,
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
        add_self_attention: bool = False,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    out_channels,
1957
1958
                    out_channels // attention_head_dim,
                    attention_head_dim,
1959
1960
1961
1962
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
1963
                    cross_attention_norm="layer_norm",
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
                    group_size=resnet_group_size,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
1979
1980
1981
1982
1983
1984
1985
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1986
1987
    ):
        output_states = ()
1988
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

2002
2003
2004
2005
2006
2007
2008
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
2009
                hidden_states = attn(
2010
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
2011
2012
2013
2014
2015
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
2016
                )
2017
            else:
2018
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
2019
2020
2021
2022
2023
2024
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
2025
                    encoder_attention_mask=encoder_attention_mask,
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
                )

            if self.downsamplers is None:
                output_states += (None,)
            else:
                output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
2040
class AttnUpBlock2D(nn.Module):
2041
2042
2043
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2044
2045
        prev_output_channel: int,
        out_channels: int,
2046
        temb_channels: int,
2047
        resolution_idx: int = None,
2048
2049
2050
2051
2052
2053
2054
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2055
        attention_head_dim=1,
2056
        output_scale_factor=1.0,
2057
        upsample_type="conv",
2058
2059
2060
2061
2062
    ):
        super().__init__()
        resnets = []
        attentions = []

2063
2064
        self.upsample_type = upsample_type

2065
2066
2067
2068
2069
2070
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2071
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2072
2073
2074
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2075
            resnets.append(
2076
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2077
2078
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2090
                Attention(
Patrick von Platen's avatar
Patrick von Platen committed
2091
                    out_channels,
2092
2093
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2094
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
2095
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
2096
                    norm_num_groups=resnet_groups,
2097
2098
2099
2100
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2101
2102
2103
2104
2105
2106
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

2107
        if upsample_type == "conv":
Patrick von Platen's avatar
Patrick von Platen committed
2108
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
        elif upsample_type == "resnet":
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        up=True,
                    )
                ]
            )
2127
2128
2129
        else:
            self.upsamplers = None

2130
2131
        self.resolution_idx = resolution_idx

2132
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
2133
2134
2135
2136
2137
2138
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2139
2140
2141
            hidden_states = resnet(hidden_states, temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
2142
2143
2144

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2145
                if self.upsample_type == "resnet":
2146
                    hidden_states = upsampler(hidden_states, temb=temb, scale=scale)
2147
                else:
2148
                    hidden_states = upsampler(hidden_states, scale=scale)
2149
2150
2151
2152

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2153
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
2154
2155
2156
2157
2158
2159
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
2160
        resolution_idx: int = None,
Patrick von Platen's avatar
Patrick von Platen committed
2161
2162
        dropout: float = 0.0,
        num_layers: int = 1,
2163
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
2164
2165
2166
2167
2168
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2169
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
2170
2171
2172
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2173
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
2174
        use_linear_projection=False,
2175
        only_cross_attention=False,
2176
        upcast_attention=False,
2177
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
2178
2179
2180
2181
2182
    ):
        super().__init__()
        resnets = []
        attentions = []

2183
        self.has_cross_attention = True
2184
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
2185
2186
2187
2188
2189
2190

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
2191
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
2204
2205
2206
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
2207
2208
                        num_attention_heads,
                        out_channels // num_attention_heads,
2209
                        in_channels=out_channels,
2210
                        num_layers=transformer_layers_per_block,
2211
2212
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
2213
                        use_linear_projection=use_linear_projection,
2214
                        only_cross_attention=only_cross_attention,
2215
                        upcast_attention=upcast_attention,
2216
                        attention_type=attention_type,
2217
2218
2219
2220
2221
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
2222
2223
                        num_attention_heads,
                        out_channels // num_attention_heads,
2224
2225
2226
2227
2228
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
2229
2230
2231
2232
2233
2234
2235
2236
2237
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2238
        self.gradient_checkpointing = False
2239
        self.resolution_idx = resolution_idx
2240
2241
2242

    def forward(
        self,
2243
2244
2245
2246
2247
2248
2249
2250
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2251
    ):
2252
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
2253
2254
2255
2256
2257
2258
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )
2259

Patrick von Platen's avatar
Patrick von Platen committed
2260
2261
2262
2263
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

Patrick von Platen's avatar
Patrick von Platen committed
2277
2278
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2279
2280
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
2281
                def create_custom_forward(module, return_dict=None):
2282
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
2283
2284
2285
2286
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
2287
2288
2289

                    return custom_forward

2290
2291
2292
2293
2294
2295
2296
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
2297
                hidden_states = attn(
2298
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
2299
2300
2301
2302
2303
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
2304
                )[0]
2305
            else:
2306
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
2307
2308
2309
2310
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
2311
2312
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
2313
2314
                    return_dict=False,
                )[0]
Patrick von Platen's avatar
Patrick von Platen committed
2315
2316
2317

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2318
                hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2319
2320
2321
2322

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2323
class UpBlock2D(nn.Module):
2324
2325
2326
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2327
2328
        prev_output_channel: int,
        out_channels: int,
2329
        temb_channels: int,
2330
        resolution_idx: int = None,
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2345
2346
2347
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2348
            resnets.append(
2349
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2350
2351
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
2366
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2367
2368
2369
        else:
            self.upsamplers = None

2370
        self.gradient_checkpointing = False
2371
        self.resolution_idx = resolution_idx
2372

2373
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
2374
2375
2376
2377
2378
2379
2380
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )

2381
2382
2383
2384
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

2398
2399
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2400
2401
2402
2403
2404
2405
2406
2407
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2408
2409
2410
2411
2412
2413
2414
2415
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2416
            else:
2417
                hidden_states = resnet(hidden_states, temb, scale=scale)
2418
2419
2420

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2421
                hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
2422
2423

        return hidden_states
2424
2425


2426
2427
2428
2429
2430
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
2431
        resolution_idx: int = None,
2432
2433
2434
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
2435
        resnet_time_scale_shift: str = "default",  # default, spatial
2436
2437
2438
2439
2440
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2441
        temb_channels=None,
2442
2443
2444
2445
2446
2447
2448
2449
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2450
                ResnetBlock2D(
2451
2452
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2453
                    temb_channels=temb_channels,
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2471
2472
        self.resolution_idx = resolution_idx

2473
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
2474
        for resnet in self.resnets:
2475
            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
2476
2477
2478
2479
2480
2481
2482
2483

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


2484
2485
2486
2487
2488
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
2489
        resolution_idx: int = None,
2490
2491
2492
2493
2494
2495
2496
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2497
        attention_head_dim=1,
2498
2499
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2500
        temb_channels=None,
2501
2502
2503
2504
2505
    ):
        super().__init__()
        resnets = []
        attentions = []

2506
2507
2508
2509
2510
2511
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2512
2513
2514
2515
        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2516
                ResnetBlock2D(
2517
2518
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2519
                    temb_channels=temb_channels,
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2530
                Attention(
2531
                    out_channels,
2532
2533
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2534
2535
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
2536
                    norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
YiYi Xu's avatar
YiYi Xu committed
2537
                    spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
2538
2539
2540
2541
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2553
2554
        self.resolution_idx = resolution_idx

2555
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
2556
        for resnet, attn in zip(self.resnets, self.attentions):
2557
2558
2559
            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs)
2560
2561
2562

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2563
                hidden_states = upsampler(hidden_states, scale=scale)
2564
2565
2566
2567

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2568
class AttnSkipUpBlock2D(nn.Module):
2569
2570
2571
2572
2573
2574
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
2575
        resolution_idx: int = None,
2576
2577
2578
2579
2580
2581
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
2582
        attention_head_dim=1,
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2595
                ResnetBlock2D(
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

2610
2611
2612
2613
2614
2615
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2616
        self.attentions.append(
2617
            Attention(
2618
                out_channels,
2619
2620
                heads=out_channels // attention_head_dim,
                dim_head=attention_head_dim,
2621
2622
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
2623
2624
2625
2626
2627
                norm_num_groups=32,
                residual_connection=True,
                bias=True,
                upcast_softmax=True,
                _from_deprecated_attn_block=True,
2628
2629
2630
2631
2632
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2633
            self.resnet_up = ResnetBlock2D(
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2645
                use_in_shortcut=True,
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

2660
2661
        self.resolution_idx = resolution_idx

2662
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None, scale: float = 1.0):
2663
2664
2665
2666
2667
2668
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2669
            hidden_states = resnet(hidden_states, temb, scale=scale)
2670

2671
2672
        cross_attention_kwargs = {"scale": scale}
        hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs)
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

2686
            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
2687
2688
2689
2690

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
2691
class SkipUpBlock2D(nn.Module):
2692
2693
2694
2695
2696
2697
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
2698
        resolution_idx: int = None,
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2717
                ResnetBlock2D(
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2734
            self.resnet_up = ResnetBlock2D(
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2746
                use_in_shortcut=True,
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

2761
2762
        self.resolution_idx = resolution_idx

2763
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None, scale: float = 1.0):
2764
2765
2766
2767
2768
2769
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2770
            hidden_states = resnet(hidden_states, temb, scale=scale)
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

2784
            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
2785
2786

        return hidden_states, skip_sample
Will Berman's avatar
Will Berman committed
2787
2788
2789
2790
2791
2792
2793
2794
2795


class ResnetUpsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
2796
        resolution_idx: int = None,
Will Berman's avatar
Will Berman committed
2797
2798
2799
2800
2801
2802
2803
2804
2805
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
2806
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2827
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2847
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2848
2849
2850
2851
2852
2853
2854
2855
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
2856
        self.resolution_idx = resolution_idx
Will Berman's avatar
Will Berman committed
2857

2858
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
Will Berman's avatar
Will Berman committed
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2873
2874
2875
2876
2877
2878
2879
2880
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
2881
            else:
2882
                hidden_states = resnet(hidden_states, temb, scale=scale)
Will Berman's avatar
Will Berman committed
2883
2884
2885

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2886
                hidden_states = upsampler(hidden_states, temb, scale=scale)
Will Berman's avatar
Will Berman committed
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897

        return hidden_states


class SimpleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
2898
        resolution_idx: int = None,
Will Berman's avatar
Will Berman committed
2899
2900
2901
2902
2903
2904
2905
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2906
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
2907
2908
2909
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2910
        skip_time_act=False,
2911
        only_cross_attention=False,
2912
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
2913
2914
2915
2916
2917
2918
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
2919
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
2920

2921
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2939
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2940
2941
                )
            )
2942
2943
2944
2945
2946

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
2947
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
2948
                Attention(
Will Berman's avatar
Will Berman committed
2949
2950
2951
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
2952
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
2953
2954
2955
2956
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
2957
                    only_cross_attention=only_cross_attention,
2958
                    cross_attention_norm=cross_attention_norm,
2959
                    processor=processor,
Will Berman's avatar
Will Berman committed
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2979
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2980
2981
2982
2983
2984
2985
2986
2987
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
2988
        self.resolution_idx = resolution_idx
Will Berman's avatar
Will Berman committed
2989
2990
2991

    def forward(
        self,
2992
2993
2994
2995
2996
2997
2998
2999
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
3000
    ):
3001
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
3002

3003
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
3015
3016
3017
3018
3019
3020
3021
        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

3022
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
3023

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
ethansmith2000's avatar
ethansmith2000 committed
3034
                hidden_states = attn(
3035
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
3036
3037
3038
3039
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=mask,
                    **cross_attention_kwargs,
                )
3040
            else:
3041
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
3042
3043
3044
3045

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
3046
                    attention_mask=mask,
3047
3048
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
3049
3050
3051

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
3052
                hidden_states = upsampler(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
3053
3054

        return hidden_states
3055
3056
3057
3058
3059
3060
3061
3062


class KUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
3063
        resolution_idx: int,
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
        dropout: float = 0.0,
        num_layers: int = 5,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: Optional[int] = 32,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        k_in_channels = 2 * out_channels
        k_out_channels = in_channels
        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
3105
        self.resolution_idx = resolution_idx
3106

3107
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

3121
3122
3123
3124
3125
3126
3127
3128
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
3129
            else:
3130
                hidden_states = resnet(hidden_states, temb, scale=scale)
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class KCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
3145
        resolution_idx: int,
3146
3147
3148
3149
3150
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
3151
        attention_head_dim=1,  # attention dim_head
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
        cross_attention_dim: int = 768,
        add_upsample: bool = True,
        upcast_attention: bool = False,
    ):
        super().__init__()
        resnets = []
        attentions = []

        is_first_block = in_channels == out_channels == temb_channels
        is_middle_block = in_channels != out_channels
        add_self_attention = True if is_first_block else False

        self.has_cross_attention = True
3165
        self.attention_head_dim = attention_head_dim
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200

        # in_channels, and out_channels for the block (k-unet)
        k_in_channels = out_channels if is_first_block else 2 * out_channels
        k_out_channels = in_channels

        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            if is_middle_block and (i == num_layers - 1):
                conv_2d_out_channels = k_out_channels
            else:
                conv_2d_out_channels = None

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    conv_2d_out_channels=conv_2d_out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    k_out_channels if (i == num_layers - 1) else out_channels,
3201
                    k_out_channels // attention_head_dim
3202
                    if (i == num_layers - 1)
3203
3204
                    else out_channels // attention_head_dim,
                    attention_head_dim,
3205
3206
3207
3208
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
3209
                    cross_attention_norm="layer_norm",
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
                    upcast_attention=upcast_attention,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
3223
        self.resolution_idx = resolution_idx
3224
3225
3226

    def forward(
        self,
3227
3228
3229
3230
3231
3232
3233
3234
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3235
3236
3237
3238
3239
    ):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

3240
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

3253
3254
3255
3256
3257
3258
3259
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
3260
                hidden_states = attn(
3261
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
3262
3263
3264
3265
3266
3267
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                )
3268
            else:
3269
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
3270
3271
3272
3273
3274
3275
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
3276
                    encoder_attention_mask=encoder_attention_mask,
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


# can potentially later be renamed to `No-feed-forward` attention
class KAttentionBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        upcast_attention: bool = False,
        temb_channels: int = 768,  # for ada_group_norm
        add_self_attention: bool = False,
3315
        cross_attention_norm: Optional[str] = None,
3316
3317
3318
3319
3320
3321
3322
3323
        group_size: int = 32,
    ):
        super().__init__()
        self.add_self_attention = add_self_attention

        # 1. Self-Attn
        if add_self_attention:
            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3324
            self.attn1 = Attention(
3325
3326
3327
3328
3329
3330
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                cross_attention_dim=None,
3331
                cross_attention_norm=None,
3332
3333
3334
3335
            )

        # 2. Cross-Attn
        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3336
        self.attn2 = Attention(
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            cross_attention_norm=cross_attention_norm,
        )

    def _to_3d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)

    def _to_4d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)

    def forward(
        self,
3355
3356
3357
3358
3359
3360
3361
3362
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        # TODO: mark emb as non-optional (self.norm2 requires it).
        #       requires assessing impact of change to positional param interface.
        emb: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        # 1. Self-Attention
        if self.add_self_attention:
            norm_hidden_states = self.norm1(hidden_states, emb)

            height, weight = norm_hidden_states.shape[2:]
            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=None,
3376
                attention_mask=attention_mask,
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
                **cross_attention_kwargs,
            )
            attn_output = self._to_4d(attn_output, height, weight)

            hidden_states = attn_output + hidden_states

        # 2. Cross-Attention/None
        norm_hidden_states = self.norm2(hidden_states, emb)

        height, weight = norm_hidden_states.shape[2:]
        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
3391
            attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
3392
3393
3394
3395
3396
3397
3398
            **cross_attention_kwargs,
        )
        attn_output = self._to_4d(attn_output, height, weight)

        hidden_states = attn_output + hidden_states

        return hidden_states