unet_2d_blocks.py 56 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import numpy as np
15
import torch
Patrick von Platen's avatar
Patrick von Platen committed
16
17
from torch import nn

18
from .attention import AttentionBlock, DualTransformer2DModel, Transformer2DModel
19
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
Patrick von Platen's avatar
Patrick von Platen committed
20
21


22
23
24
25
26
27
28
29
30
31
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
32
    resnet_groups=None,
33
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
34
    downsample_padding=None,
35
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
36
    use_linear_projection=False,
37
    only_cross_attention=False,
38
):
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
42
43
44
45
46
47
48
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
49
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
50
            downsample_padding=downsample_padding,
51
        )
Patrick von Platen's avatar
Patrick von Platen committed
52
53
    elif down_block_type == "AttnDownBlock2D":
        return AttnDownBlock2D(
54
55
56
57
58
59
60
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
61
            resnet_groups=resnet_groups,
62
            downsample_padding=downsample_padding,
63
64
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
65
    elif down_block_type == "CrossAttnDownBlock2D":
66
        if cross_attention_dim is None:
67
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
68
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
69
70
71
72
73
74
75
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
76
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
77
            downsample_padding=downsample_padding,
78
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
79
            attn_num_head_channels=attn_num_head_channels,
80
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
81
            use_linear_projection=use_linear_projection,
82
            only_cross_attention=only_cross_attention,
Patrick von Platen's avatar
Patrick von Platen committed
83
        )
Patrick von Platen's avatar
Patrick von Platen committed
84
85
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
86
87
88
89
90
91
92
93
94
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
        )
Patrick von Platen's avatar
Patrick von Platen committed
95
96
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
97
98
99
100
101
102
103
104
105
106
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
        )
107
108
109
110
111
112
113
114
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
115
            resnet_groups=resnet_groups,
116
117
            downsample_padding=downsample_padding,
        )
Will Berman's avatar
Will Berman committed
118
119
120
121
122
123
124
125
126
127
128
129
130
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
        )
    raise ValueError(f"{down_block_type} does not exist.")
131
132
133
134
135
136


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
137
138
    out_channels,
    prev_output_channel,
139
140
141
142
143
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
144
    resnet_groups=None,
145
    cross_attention_dim=None,
146
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
147
    use_linear_projection=False,
148
    only_cross_attention=False,
149
):
Patrick von Platen's avatar
Patrick von Platen committed
150
151
152
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
153
154
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
155
156
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
157
158
159
160
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
161
            resnet_groups=resnet_groups,
162
        )
Patrick von Platen's avatar
Patrick von Platen committed
163
    elif up_block_type == "CrossAttnUpBlock2D":
164
165
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
166
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
172
173
174
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
175
            resnet_groups=resnet_groups,
176
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
177
            attn_num_head_channels=attn_num_head_channels,
178
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
179
            use_linear_projection=use_linear_projection,
180
            only_cross_attention=only_cross_attention,
Patrick von Platen's avatar
Patrick von Platen committed
181
        )
Patrick von Platen's avatar
Patrick von Platen committed
182
183
    elif up_block_type == "AttnUpBlock2D":
        return AttnUpBlock2D(
184
185
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
186
187
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
188
189
190
191
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
192
            resnet_groups=resnet_groups,
193
194
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
195
196
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
197
198
199
200
201
202
203
204
205
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
Patrick von Platen's avatar
Patrick von Platen committed
206
207
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
208
209
210
211
212
213
214
215
216
217
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            attn_num_head_channels=attn_num_head_channels,
        )
218
219
220
221
222
223
224
225
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
226
            resnet_groups=resnet_groups,
227
        )
Will Berman's avatar
Will Berman committed
228
229
230
231
232
233
234
235
236
237
238
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            attn_num_head_channels=attn_num_head_channels,
        )
239
    raise ValueError(f"{up_block_type} does not exist.")
240
241


Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
245
246
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
247
        dropout: float = 0.0,
248
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
249
250
251
252
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
253
        resnet_pre_norm: bool = True,
254
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
255
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
259
        output_scale_factor=1.0,
    ):
        super().__init__()

Patrick von Platen's avatar
Patrick von Platen committed
260
        self.attention_type = attention_type
261
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Patrick von Platen's avatar
Patrick von Platen committed
262

263
264
        # there is always at least one resnet
        resnets = [
265
            ResnetBlock2D(
266
267
268
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
269
                eps=resnet_eps,
270
271
272
273
274
275
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
276
            )
277
278
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
279

280
281
        for _ in range(num_layers):
            attentions.append(
282
                AttentionBlock(
283
284
285
                    in_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
286
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
287
                    norm_num_groups=resnet_groups,
288
                )
289
            )
290
            resnets.append(
291
                ResnetBlock2D(
292
293
294
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
295
                    eps=resnet_eps,
296
297
298
299
300
301
302
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
303
304
            )

305
306
307
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Patrick von Platen's avatar
Patrick von Platen committed
308
309
    def forward(self, hidden_states, temb=None, encoder_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
310
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Patrick von Platen's avatar
Patrick von Platen committed
311
312
            if self.attention_type == "default":
                hidden_states = attn(hidden_states)
313
            else:
Patrick von Platen's avatar
Patrick von Platen committed
314
315
                hidden_states = attn(hidden_states, encoder_states)
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
316

317
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
318

319

Patrick von Platen's avatar
Patrick von Platen committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=1.0,
        cross_attention_dim=1280,
336
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
337
        use_linear_projection=False,
Patrick von Platen's avatar
Patrick von Platen committed
338
339
340
341
    ):
        super().__init__()

        self.attention_type = attention_type
342
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
343
344
345
346
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
347
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
363
364
365
366
367
368
369
370
371
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
372
                        use_linear_projection=use_linear_projection,
373
374
375
376
377
378
379
380
381
382
383
384
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
385
386
                )
            resnets.append(
387
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
407
            hidden_states = attn(hidden_states, encoder_hidden_states).sample
Patrick von Platen's avatar
Patrick von Platen committed
408
409
410
411
412
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
413
class AttnDownBlock2D(nn.Module):
414
415
416
417
418
419
420
421
422
423
424
425
426
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
427
        attention_type="default",
428
        output_scale_factor=1.0,
429
        downsample_padding=1,
430
431
432
433
434
435
        add_downsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

Patrick von Platen's avatar
Patrick von Platen committed
436
437
        self.attention_type = attention_type

438
439
440
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
441
                ResnetBlock2D(
442
443
444
445
446
447
448
449
450
451
452
453
454
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
455
                AttentionBlock(
456
457
458
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
459
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
460
                    norm_num_groups=resnet_groups,
461
462
463
464
465
466
467
468
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
469
470
                [
                    Downsample2D(
471
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
472
473
                    )
                ]
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
495
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        attention_type="default",
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
514
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
515
        use_linear_projection=False,
516
        only_cross_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
517
518
519
520
521
522
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.attention_type = attention_type
523
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
524
525
526
527

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
528
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
529
530
531
532
533
534
535
536
537
538
539
540
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
541
542
543
544
545
546
547
548
549
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
550
                        use_linear_projection=use_linear_projection,
551
                        only_cross_attention=only_cross_attention,
552
553
554
555
556
557
558
559
560
561
562
563
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
564
565
566
567
568
569
570
571
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
572
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
573
574
575
576
577
578
                    )
                ]
            )
        else:
            self.downsamplers = None

579
580
        self.gradient_checkpointing = False

Patrick von Platen's avatar
Patrick von Platen committed
581
582
583
584
    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
585
586
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
587
                def create_custom_forward(module, return_dict=None):
588
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
589
590
591
592
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
593
594
595
596
597

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
598
599
                    create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
                )[0]
600
601
            else:
                hidden_states = resnet(hidden_states, temb)
Will Berman's avatar
Will Berman committed
602
                hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
603

Patrick von Platen's avatar
Patrick von Platen committed
604
605
606
607
608
609
610
611
612
613
614
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
615
class DownBlock2D(nn.Module):
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
630
        downsample_padding=1,
631
632
633
634
635
636
637
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
638
                ResnetBlock2D(
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
656
657
                [
                    Downsample2D(
658
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
659
660
                    )
                ]
661
662
663
664
            )
        else:
            self.downsamplers = None

665
666
        self.gradient_checkpointing = False

667
668
669
670
    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
671
672
673
674
675
676
677
678
679
680
681
682
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

683
684
685
686
687
688
689
690
691
692
693
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
716
                ResnetBlock2D(
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
736
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
778
                ResnetBlock2D(
779
780
781
782
783
784
785
786
787
788
789
790
791
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
792
                AttentionBlock(
793
794
795
796
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
797
                    norm_num_groups=resnet_groups,
798
799
800
801
802
803
804
805
806
807
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
808
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
827
class AttnSkipDownBlock2D(nn.Module):
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=np.sqrt(2.0),
        downsample_padding=1,
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        self.attention_type = attention_type

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
854
                ResnetBlock2D(
855
856
857
858
859
860
861
862
863
864
865
866
867
868
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
869
                AttentionBlock(
870
871
872
873
874
875
876
877
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
                )
            )

        if add_downsample:
878
            self.resnet_down = ResnetBlock2D(
879
880
881
882
883
884
885
886
887
888
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
889
                use_in_shortcut=True,
890
891
892
                down=True,
                kernel="fir",
            )
893
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
920
class SkipDownBlock2D(nn.Module):
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
942
                ResnetBlock2D(
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
958
            self.resnet_down = ResnetBlock2D(
959
960
961
962
963
964
965
966
967
968
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
969
                use_in_shortcut=True,
970
971
972
                down=True,
                kernel="fir",
            )
973
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
999
class AttnUpBlock2D(nn.Module):
1000
1001
1002
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1003
1004
        prev_output_channel: int,
        out_channels: int,
1005
1006
1007
1008
1009
1010
1011
1012
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
Patrick von Platen's avatar
Patrick von Platen committed
1013
        attention_type="default",
1014
1015
1016
1017
1018
1019
1020
1021
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

Patrick von Platen's avatar
Patrick von Platen committed
1022
1023
        self.attention_type = attention_type

1024
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1025
1026
1027
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1028
            resnets.append(
1029
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1030
1031
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1043
                AttentionBlock(
Patrick von Platen's avatar
Patrick von Platen committed
1044
                    out_channels,
1045
1046
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
1047
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1048
                    norm_num_groups=resnet_groups,
1049
1050
1051
1052
1053
1054
1055
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1056
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        else:
            self.upsamplers = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1077
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        attention_type="default",
        output_scale_factor=1.0,
        add_upsample=True,
1096
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1097
        use_linear_projection=False,
1098
        only_cross_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
1099
1100
1101
1102
1103
1104
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.attention_type = attention_type
1105
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
1106
1107
1108
1109
1110
1111

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
1112
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
1125
1126
1127
1128
1129
1130
1131
1132
1133
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1134
                        use_linear_projection=use_linear_projection,
1135
                        only_cross_attention=only_cross_attention,
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

1157
1158
1159
1160
1161
1162
1163
1164
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
1165
        upsample_size=None,
1166
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1167
1168
1169
1170
1171
1172
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1173
1174
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1175
                def create_custom_forward(module, return_dict=None):
1176
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1177
1178
1179
1180
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1181
1182
1183
1184
1185

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
1186
1187
                    create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
                )[0]
1188
1189
            else:
                hidden_states = resnet(hidden_states, temb)
Will Berman's avatar
Will Berman committed
1190
                hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
Patrick von Platen's avatar
Patrick von Platen committed
1191
1192
1193

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1194
                hidden_states = upsampler(hidden_states, upsample_size)
Patrick von Platen's avatar
Patrick von Platen committed
1195
1196
1197
1198

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1199
class UpBlock2D(nn.Module):
1200
1201
1202
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1203
1204
        prev_output_channel: int,
        out_channels: int,
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1220
1221
1222
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1223
            resnets.append(
1224
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1225
1226
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1241
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1242
1243
1244
        else:
            self.upsamplers = None

1245
1246
        self.gradient_checkpointing = False

1247
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
1248
1249
1250
1251
1252
1253
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)
1265
1266
1267

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1268
                hidden_states = upsampler(hidden_states, upsample_size)
1269
1270

        return hidden_states
1271
1272


1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1295
                ResnetBlock2D(
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1351
                ResnetBlock2D(
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1365
                AttentionBlock(
1366
1367
1368
1369
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1370
                    norm_num_groups=resnet_groups,
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1394
class AttnSkipUpBlock2D(nn.Module):
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=np.sqrt(2.0),
        upsample_padding=1,
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        self.attention_type = attention_type

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1424
                ResnetBlock2D(
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions.append(
1440
            AttentionBlock(
1441
1442
1443
1444
1445
1446
1447
1448
1449
                out_channels,
                num_head_channels=attn_num_head_channels,
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1450
            self.resnet_up = ResnetBlock2D(
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1462
                use_in_shortcut=True,
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        hidden_states = self.attentions[0](hidden_states)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1505
class SkipUpBlock2D(nn.Module):
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1530
                ResnetBlock2D(
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1547
            self.resnet_up = ResnetBlock2D(
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1559
                use_in_shortcut=True,
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample