".github/vscode:/vscode.git/clone" did not exist on "bf3c81378223fa2ee4212050c9886338feb19371"
unet_2d_blocks.py 116 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional, Tuple
15

16
import numpy as np
17
import torch
18
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
19
20
from torch import nn

21
from ..utils import is_torch_version, logging
22
from .attention import AdaGroupNorm
23
from .attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
24
from .dual_transformer_2d import DualTransformer2DModel
25
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
26
from .transformer_2d import Transformer2DModel
Patrick von Platen's avatar
Patrick von Platen committed
27
28


29
30
31
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


32
33
34
35
36
37
38
39
40
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
41
    num_attention_heads=None,
42
    resnet_groups=None,
43
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
44
    downsample_padding=None,
45
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
46
    use_linear_projection=False,
47
    only_cross_attention=False,
48
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
49
    resnet_time_scale_shift="default",
50
51
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
52
    cross_attention_norm=None,
53
    attention_head_dim=None,
54
    downsample_type=None,
55
):
56
57
58
59
60
61
62
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
66
67
68
69
70
71
72
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
73
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
74
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
75
76
77
78
79
80
81
82
83
84
85
86
87
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "ResnetDownsampleBlock2D":
        return ResnetDownsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
88
89
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
90
        )
Patrick von Platen's avatar
Patrick von Platen committed
91
    elif down_block_type == "AttnDownBlock2D":
92
93
94
95
        if add_downsample is False:
            downsample_type = None
        else:
            downsample_type = downsample_type or "conv"  # default to 'conv'
Patrick von Platen's avatar
Patrick von Platen committed
96
        return AttnDownBlock2D(
97
98
99
100
101
102
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
103
            resnet_groups=resnet_groups,
104
            downsample_padding=downsample_padding,
105
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
106
            resnet_time_scale_shift=resnet_time_scale_shift,
107
            downsample_type=downsample_type,
108
        )
Patrick von Platen's avatar
Patrick von Platen committed
109
    elif down_block_type == "CrossAttnDownBlock2D":
110
        if cross_attention_dim is None:
111
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
112
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
113
114
115
116
117
118
119
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
120
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
121
            downsample_padding=downsample_padding,
122
            cross_attention_dim=cross_attention_dim,
123
            num_attention_heads=num_attention_heads,
124
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
125
            use_linear_projection=use_linear_projection,
126
            only_cross_attention=only_cross_attention,
127
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "SimpleCrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
        return SimpleCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
143
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
144
            resnet_time_scale_shift=resnet_time_scale_shift,
145
146
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
147
            only_cross_attention=only_cross_attention,
148
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
149
        )
Patrick von Platen's avatar
Patrick von Platen committed
150
151
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
152
153
154
155
156
157
158
159
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
160
            resnet_time_scale_shift=resnet_time_scale_shift,
161
        )
Patrick von Platen's avatar
Patrick von Platen committed
162
163
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
164
165
166
167
168
169
170
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
171
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
172
            resnet_time_scale_shift=resnet_time_scale_shift,
173
        )
174
175
176
177
178
179
180
181
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
182
            resnet_groups=resnet_groups,
183
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
184
            resnet_time_scale_shift=resnet_time_scale_shift,
185
        )
Will Berman's avatar
Will Berman committed
186
187
188
189
190
191
192
193
194
195
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
196
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
197
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
198
        )
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    elif down_block_type == "KDownBlock2D":
        return KDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif down_block_type == "KCrossAttnDownBlock2D":
        return KCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
219
            attention_head_dim=attention_head_dim,
220
221
            add_self_attention=True if not add_downsample else False,
        )
Will Berman's avatar
Will Berman committed
222
    raise ValueError(f"{down_block_type} does not exist.")
223
224
225
226
227
228


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
229
230
    out_channels,
    prev_output_channel,
231
232
233
234
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
235
    num_attention_heads=None,
236
    resnet_groups=None,
237
    cross_attention_dim=None,
238
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
239
    use_linear_projection=False,
240
    only_cross_attention=False,
241
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
242
    resnet_time_scale_shift="default",
243
244
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
245
    cross_attention_norm=None,
246
    attention_head_dim=None,
247
    upsample_type=None,
248
):
249
250
251
252
253
254
255
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
259
260
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
261
262
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
263
264
265
266
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
267
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "ResnetUpsampleBlock2D":
        return ResnetUpsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
282
283
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
284
        )
Patrick von Platen's avatar
Patrick von Platen committed
285
    elif up_block_type == "CrossAttnUpBlock2D":
286
287
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
288
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
289
290
291
292
293
294
295
296
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
297
            resnet_groups=resnet_groups,
298
            cross_attention_dim=cross_attention_dim,
299
            num_attention_heads=num_attention_heads,
300
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
301
            use_linear_projection=use_linear_projection,
302
            only_cross_attention=only_cross_attention,
303
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "SimpleCrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
        return SimpleCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
320
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
321
            resnet_time_scale_shift=resnet_time_scale_shift,
322
323
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
324
            only_cross_attention=only_cross_attention,
325
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
326
        )
Patrick von Platen's avatar
Patrick von Platen committed
327
    elif up_block_type == "AttnUpBlock2D":
328
329
330
331
332
        if add_upsample is False:
            upsample_type = None
        else:
            upsample_type = upsample_type or "conv"  # default to 'conv'

Patrick von Platen's avatar
Patrick von Platen committed
333
        return AttnUpBlock2D(
334
335
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
336
337
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
338
339
340
            temb_channels=temb_channels,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
341
            resnet_groups=resnet_groups,
342
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
343
            resnet_time_scale_shift=resnet_time_scale_shift,
344
            upsample_type=upsample_type,
345
        )
Patrick von Platen's avatar
Patrick von Platen committed
346
347
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
348
349
350
351
352
353
354
355
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
Will Berman's avatar
Will Berman committed
356
            resnet_time_scale_shift=resnet_time_scale_shift,
357
        )
Patrick von Platen's avatar
Patrick von Platen committed
358
359
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
360
361
362
363
364
365
366
367
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
368
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
369
            resnet_time_scale_shift=resnet_time_scale_shift,
370
        )
371
372
373
374
375
376
377
378
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
379
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
380
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
381
            temb_channels=temb_channels,
382
        )
Will Berman's avatar
Will Berman committed
383
384
385
386
387
388
389
390
391
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
392
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
393
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
394
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
395
        )
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    elif up_block_type == "KUpBlock2D":
        return KUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif up_block_type == "KCrossAttnUpBlock2D":
        return KCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
416
            attention_head_dim=attention_head_dim,
417
418
        )

419
    raise ValueError(f"{up_block_type} does not exist.")
420
421


Patrick von Platen's avatar
Patrick von Platen committed
422
423
424
425
426
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
427
        dropout: float = 0.0,
428
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
429
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
430
        resnet_time_scale_shift: str = "default",  # default, spatial
Patrick von Platen's avatar
Patrick von Platen committed
431
432
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
433
        resnet_pre_norm: bool = True,
Will Berman's avatar
Will Berman committed
434
        add_attention: bool = True,
435
        attention_head_dim=1,
Patrick von Platen's avatar
Patrick von Platen committed
436
437
438
        output_scale_factor=1.0,
    ):
        super().__init__()
439
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Will Berman's avatar
Will Berman committed
440
        self.add_attention = add_attention
Patrick von Platen's avatar
Patrick von Platen committed
441

442
443
        # there is always at least one resnet
        resnets = [
444
            ResnetBlock2D(
445
446
447
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
448
                eps=resnet_eps,
449
450
451
452
453
454
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
455
            )
456
457
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
458

459
460
461
462
463
464
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
            )
            attention_head_dim = in_channels

465
        for _ in range(num_layers):
Will Berman's avatar
Will Berman committed
466
467
            if self.add_attention:
                attentions.append(
468
                    Attention(
Will Berman's avatar
Will Berman committed
469
                        in_channels,
470
471
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
472
473
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
YiYi Xu's avatar
YiYi Xu committed
474
475
                        norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
476
477
478
479
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
Will Berman's avatar
Will Berman committed
480
                    )
481
                )
Will Berman's avatar
Will Berman committed
482
483
484
            else:
                attentions.append(None)

485
            resnets.append(
486
                ResnetBlock2D(
487
488
489
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
490
                    eps=resnet_eps,
491
492
493
494
495
496
497
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
498
499
            )

500
501
502
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Will Berman's avatar
Will Berman committed
503
    def forward(self, hidden_states, temb=None):
Patrick von Platen's avatar
Patrick von Platen committed
504
        hidden_states = self.resnets[0](hidden_states, temb)
505
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
506
            if attn is not None:
YiYi Xu's avatar
YiYi Xu committed
507
                hidden_states = attn(hidden_states, temb=temb)
Patrick von Platen's avatar
Patrick von Platen committed
508
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
509

510
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
511

512

Patrick von Platen's avatar
Patrick von Platen committed
513
514
515
516
517
518
519
520
521
522
523
524
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
525
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
526
527
        output_scale_factor=1.0,
        cross_attention_dim=1280,
528
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
529
        use_linear_projection=False,
530
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
531
532
533
    ):
        super().__init__()

534
        self.has_cross_attention = True
535
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
536
537
538
539
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
540
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
556
557
558
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
559
560
                        num_attention_heads,
                        in_channels // num_attention_heads,
561
562
563
564
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
565
                        use_linear_projection=use_linear_projection,
566
                        upcast_attention=upcast_attention,
567
568
569
570
571
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
572
573
                        num_attention_heads,
                        in_channels // num_attention_heads,
574
575
576
577
578
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
579
580
                )
            resnets.append(
581
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

598
    def forward(
599
600
601
602
603
604
605
606
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
Patrick von Platen's avatar
Patrick von Platen committed
607
608
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
609
610
611
612
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
613
614
                attention_mask=attention_mask,
                encoder_attention_mask=encoder_attention_mask,
615
616
                return_dict=False,
            )[0]
Will Berman's avatar
Will Berman committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


class UNetMidBlock2DSimpleCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
634
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
635
636
        output_scale_factor=1.0,
        cross_attention_dim=1280,
637
        skip_time_act=False,
638
        only_cross_attention=False,
639
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
640
641
642
643
644
    ):
        super().__init__()

        self.has_cross_attention = True

645
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
646
647
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

648
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
649
650
651
652
653
654
655
656
657
658
659
660
661
662

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
663
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
664
665
666
667
668
            )
        ]
        attentions = []

        for _ in range(num_layers):
669
670
671
672
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
673
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
674
                Attention(
Will Berman's avatar
Will Berman committed
675
676
677
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
678
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
679
680
681
682
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
683
                    only_cross_attention=only_cross_attention,
684
                    cross_attention_norm=cross_attention_norm,
685
                    processor=processor,
Will Berman's avatar
Will Berman committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
700
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
701
702
703
704
705
706
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

707
    def forward(
708
709
710
711
712
713
714
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
715
716
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
717
718
719
720
721
722
723
724
725
726
727
728

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
729
730
731
732
733
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
734
                encoder_hidden_states=encoder_hidden_states,
735
                attention_mask=mask,
736
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
737
738
739
            )

            # resnet
Patrick von Platen's avatar
Patrick von Platen committed
740
741
742
743
744
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
745
class AttnDownBlock2D(nn.Module):
746
747
748
749
750
751
752
753
754
755
756
757
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
758
        attention_head_dim=1,
759
        output_scale_factor=1.0,
760
        downsample_padding=1,
761
        downsample_type="conv",
762
763
764
765
    ):
        super().__init__()
        resnets = []
        attentions = []
766
        self.downsample_type = downsample_type
767

768
769
770
771
772
773
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

774
775
776
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
777
                ResnetBlock2D(
778
779
780
781
782
783
784
785
786
787
788
789
790
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
791
                Attention(
792
                    out_channels,
793
794
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
795
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
796
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
797
                    norm_num_groups=resnet_groups,
798
799
800
801
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
802
803
804
805
806
807
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

808
        if downsample_type == "conv":
809
            self.downsamplers = nn.ModuleList(
810
811
                [
                    Downsample2D(
812
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
813
814
                    )
                ]
815
            )
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
        elif downsample_type == "resnet":
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        down=True,
                    )
                ]
            )
834
835
836
        else:
            self.downsamplers = None

837
    def forward(self, hidden_states, temb=None, upsample_size=None):
838
839
840
841
842
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
843
            output_states = output_states + (hidden_states,)
844
845
846

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
847
848
849
850
                if self.downsample_type == "resnet":
                    hidden_states = downsampler(hidden_states, temb=temb)
                else:
                    hidden_states = downsampler(hidden_states)
851
852
853
854
855
856

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
857
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
858
859
860
861
862
863
864
865
866
867
868
869
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
870
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
871
872
873
874
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
875
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
876
        use_linear_projection=False,
877
        only_cross_attention=False,
878
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
879
880
881
882
883
    ):
        super().__init__()
        resnets = []
        attentions = []

884
        self.has_cross_attention = True
885
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
886
887
888
889

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
890
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
891
892
893
894
895
896
897
898
899
900
901
902
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
903
904
905
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
906
907
                        num_attention_heads,
                        out_channels // num_attention_heads,
908
909
910
911
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
912
                        use_linear_projection=use_linear_projection,
913
                        only_cross_attention=only_cross_attention,
914
                        upcast_attention=upcast_attention,
915
916
917
918
919
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
920
921
                        num_attention_heads,
                        out_channels // num_attention_heads,
922
923
924
925
926
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
927
928
929
930
931
932
933
934
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
935
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
936
937
938
939
940
941
                    )
                ]
            )
        else:
            self.downsamplers = None

942
943
        self.gradient_checkpointing = False

944
    def forward(
945
946
947
948
949
950
951
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
952
    ):
Patrick von Platen's avatar
Patrick von Platen committed
953
954
955
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
956
957
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
958
                def create_custom_forward(module, return_dict=None):
959
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
960
961
962
963
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
964
965
966

                    return custom_forward

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    None,  # timestep
                    None,  # class_labels
                    cross_attention_kwargs,
                    attention_mask,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
985
986
            else:
                hidden_states = resnet(hidden_states, temb)
987
988
989
990
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
991
992
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
993
994
                    return_dict=False,
                )[0]
995

996
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
997
998
999
1000
1001

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

1002
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1003
1004
1005
1006

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1007
class DownBlock2D(nn.Module):
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
1022
        downsample_padding=1,
1023
1024
1025
1026
1027
1028
1029
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1030
                ResnetBlock2D(
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
1048
1049
                [
                    Downsample2D(
1050
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1051
1052
                    )
                ]
1053
1054
1055
1056
            )
        else:
            self.downsamplers = None

1057
1058
        self.gradient_checkpointing = False

1059
1060
1061
1062
    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
1063
1064
1065
1066
1067
1068
1069
1070
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1071
1072
1073
1074
1075
1076
1077
1078
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1079
1080
1081
            else:
                hidden_states = resnet(hidden_states, temb)

1082
            output_states = output_states + (hidden_states,)
1083
1084
1085
1086
1087

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

1088
            output_states = output_states + (hidden_states,)
1089
1090
1091
1092

        return hidden_states, output_states


1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1115
                ResnetBlock2D(
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1135
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1165
        attention_head_dim=1,
1166
1167
1168
1169
1170
1171
1172
1173
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

1174
1175
1176
1177
1178
1179
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1180
1181
1182
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1183
                ResnetBlock2D(
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1197
                Attention(
1198
                    out_channels,
1199
1200
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1201
1202
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1203
                    norm_num_groups=resnet_groups,
1204
1205
1206
1207
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1218
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1237
class AttnSkipDownBlock2D(nn.Module):
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
1249
        attention_head_dim=1,
1250
1251
1252
1253
1254
1255
1256
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

1257
1258
1259
1260
1261
1262
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1263
1264
1265
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1266
                ResnetBlock2D(
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
1281
                Attention(
1282
                    out_channels,
1283
1284
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1285
1286
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
1287
1288
1289
1290
1291
                    norm_num_groups=32,
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1292
1293
1294
1295
                )
            )

        if add_downsample:
1296
            self.resnet_down = ResnetBlock2D(
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1307
                use_in_shortcut=True,
1308
1309
1310
                down=True,
                kernel="fir",
            )
1311
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1338
class SkipDownBlock2D(nn.Module):
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1360
                ResnetBlock2D(
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
1376
            self.resnet_down = ResnetBlock2D(
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1387
                use_in_shortcut=True,
1388
1389
1390
                down=True,
                kernel="fir",
            )
1391
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Will Berman's avatar
Will Berman committed
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
class ResnetDownsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
1432
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1451
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1471
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1493
1494
1495
1496
1497
1498
1499
1500
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
1501
1502
1503
            else:
                hidden_states = resnet(hidden_states, temb)

1504
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1505
1506
1507
1508
1509

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, temb)

1510
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527

        return hidden_states, output_states


class SimpleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1528
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
1529
1530
1531
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_downsample=True,
1532
        skip_time_act=False,
1533
        only_cross_attention=False,
1534
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
1535
1536
1537
1538
1539
1540
1541
1542
    ):
        super().__init__()

        self.has_cross_attention = True

        resnets = []
        attentions = []

1543
1544
        self.attention_head_dim = attention_head_dim
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1560
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1561
1562
                )
            )
1563
1564
1565
1566
1567

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1568
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1569
                Attention(
Will Berman's avatar
Will Berman committed
1570
1571
1572
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
1573
                    dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
1574
1575
1576
1577
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1578
                    only_cross_attention=only_cross_attention,
1579
                    cross_attention_norm=cross_attention_norm,
1580
                    processor=processor,
Will Berman's avatar
Will Berman committed
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1600
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1601
1602
1603
1604
1605
1606
1607
1608
1609
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1610
    def forward(
1611
1612
1613
1614
1615
1616
1617
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1618
    ):
Will Berman's avatar
Will Berman committed
1619
        output_states = ()
1620
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
1621

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
1633
        for resnet, attn in zip(self.resnets, self.attentions):
1634
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
1635

1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
1650
                    mask,
1651
1652
1653
1654
1655
1656
1657
1658
                    cross_attention_kwargs,
                )[0]
            else:
                hidden_states = resnet(hidden_states, temb)

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
1659
                    attention_mask=mask,
1660
1661
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
1662

1663
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1664
1665
1666
1667
1668

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, temb)

1669
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1670
1671
1672
1673

        return hidden_states, output_states


1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
class KDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
        add_downsample=False,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            # YiYi's comments- might be able to use FirDownsample2D, look into details later
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1732
1733
1734
1735
1736
1737
1738
1739
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
            else:
                hidden_states = resnet(hidden_states, temb)

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


class KCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        cross_attention_dim: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_group_size: int = 32,
        add_downsample=True,
1763
        attention_head_dim: int = 64,
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
        add_self_attention: bool = False,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    out_channels,
1796
1797
                    out_channels // attention_head_dim,
                    attention_head_dim,
1798
1799
1800
1801
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
1802
                    cross_attention_norm="layer_norm",
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
                    group_size=resnet_group_size,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
1818
1819
1820
1821
1822
1823
1824
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
    ):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    cross_attention_kwargs,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )
1857
1858
1859
1860
1861
1862
1863
1864
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
1865
                    encoder_attention_mask=encoder_attention_mask,
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
                )

            if self.downsamplers is None:
                output_states += (None,)
            else:
                output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1880
class AttnUpBlock2D(nn.Module):
1881
1882
1883
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1884
1885
        prev_output_channel: int,
        out_channels: int,
1886
1887
1888
1889
1890
1891
1892
1893
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1894
        attention_head_dim=1,
1895
        output_scale_factor=1.0,
1896
        upsample_type="conv",
1897
1898
1899
1900
1901
    ):
        super().__init__()
        resnets = []
        attentions = []

1902
1903
        self.upsample_type = upsample_type

1904
1905
1906
1907
1908
1909
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1910
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1911
1912
1913
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1914
            resnets.append(
1915
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1916
1917
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1929
                Attention(
Patrick von Platen's avatar
Patrick von Platen committed
1930
                    out_channels,
1931
1932
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1933
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
1934
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1935
                    norm_num_groups=resnet_groups,
1936
1937
1938
1939
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1940
1941
1942
1943
1944
1945
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

1946
        if upsample_type == "conv":
Patrick von Platen's avatar
Patrick von Platen committed
1947
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
        elif upsample_type == "resnet":
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        up=True,
                    )
                ]
            )
1966
1967
1968
        else:
            self.upsamplers = None

1969
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1981
1982
1983
1984
                if self.upsample_type == "resnet":
                    hidden_states = upsampler(hidden_states, temb=temb)
                else:
                    hidden_states = upsampler(hidden_states)
1985
1986
1987
1988

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1989
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2003
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
2004
2005
2006
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2007
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
2008
        use_linear_projection=False,
2009
        only_cross_attention=False,
2010
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
2011
2012
2013
2014
2015
    ):
        super().__init__()
        resnets = []
        attentions = []

2016
        self.has_cross_attention = True
2017
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
2018
2019
2020
2021
2022
2023

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
2024
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
2037
2038
2039
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
2040
2041
                        num_attention_heads,
                        out_channels // num_attention_heads,
2042
2043
2044
2045
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
2046
                        use_linear_projection=use_linear_projection,
2047
                        only_cross_attention=only_cross_attention,
2048
                        upcast_attention=upcast_attention,
2049
2050
2051
2052
2053
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
2054
2055
                        num_attention_heads,
                        out_channels // num_attention_heads,
2056
2057
2058
2059
2060
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
2061
2062
2063
2064
2065
2066
2067
2068
2069
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2070
2071
2072
2073
        self.gradient_checkpointing = False

    def forward(
        self,
2074
2075
2076
2077
2078
2079
2080
2081
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2082
    ):
Patrick von Platen's avatar
Patrick von Platen committed
2083
2084
2085
2086
2087
2088
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2089
2090
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
2091
                def create_custom_forward(module, return_dict=None):
2092
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
2093
2094
2095
2096
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
2097
2098
2099

                    return custom_forward

2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    None,  # timestep
                    None,  # class_labels
                    cross_attention_kwargs,
                    attention_mask,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
2118
2119
            else:
                hidden_states = resnet(hidden_states, temb)
2120
2121
2122
2123
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
2124
2125
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
2126
2127
                    return_dict=False,
                )[0]
Patrick von Platen's avatar
Patrick von Platen committed
2128
2129
2130

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2131
                hidden_states = upsampler(hidden_states, upsample_size)
Patrick von Platen's avatar
Patrick von Platen committed
2132
2133
2134
2135

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2136
class UpBlock2D(nn.Module):
2137
2138
2139
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2140
2141
        prev_output_channel: int,
        out_channels: int,
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2157
2158
2159
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2160
            resnets.append(
2161
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2162
2163
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
2178
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2179
2180
2181
        else:
            self.upsamplers = None

2182
2183
        self.gradient_checkpointing = False

2184
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
2185
2186
2187
2188
2189
2190
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2191
2192
2193
2194
2195
2196
2197
2198
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2199
2200
2201
2202
2203
2204
2205
2206
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2207
2208
            else:
                hidden_states = resnet(hidden_states, temb)
2209
2210
2211

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2212
                hidden_states = upsampler(hidden_states, upsample_size)
2213
2214

        return hidden_states
2215
2216


2217
2218
2219
2220
2221
2222
2223
2224
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
2225
        resnet_time_scale_shift: str = "default",  # default, spatial
2226
2227
2228
2229
2230
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2231
        temb_channels=None,
2232
2233
2234
2235
2236
2237
2238
2239
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2240
                ResnetBlock2D(
2241
2242
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2243
                    temb_channels=temb_channels,
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

YiYi Xu's avatar
YiYi Xu committed
2261
    def forward(self, hidden_states, temb=None):
2262
        for resnet in self.resnets:
YiYi Xu's avatar
YiYi Xu committed
2263
            hidden_states = resnet(hidden_states, temb=temb)
2264
2265
2266
2267
2268
2269
2270
2271

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2284
        attention_head_dim=1,
2285
2286
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2287
        temb_channels=None,
2288
2289
2290
2291
2292
    ):
        super().__init__()
        resnets = []
        attentions = []

2293
2294
2295
2296
2297
2298
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2299
2300
2301
2302
        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2303
                ResnetBlock2D(
2304
2305
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2306
                    temb_channels=temb_channels,
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2317
                Attention(
2318
                    out_channels,
2319
2320
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2321
2322
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
2323
                    norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
YiYi Xu's avatar
YiYi Xu committed
2324
                    spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
2325
2326
2327
2328
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

YiYi Xu's avatar
YiYi Xu committed
2340
    def forward(self, hidden_states, temb=None):
2341
        for resnet, attn in zip(self.resnets, self.attentions):
YiYi Xu's avatar
YiYi Xu committed
2342
2343
            hidden_states = resnet(hidden_states, temb=temb)
            hidden_states = attn(hidden_states, temb=temb)
2344
2345
2346
2347
2348
2349
2350
2351

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2352
class AttnSkipUpBlock2D(nn.Module):
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
2365
        attention_head_dim=1,
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2378
                ResnetBlock2D(
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

2393
2394
2395
2396
2397
2398
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2399
        self.attentions.append(
2400
            Attention(
2401
                out_channels,
2402
2403
                heads=out_channels // attention_head_dim,
                dim_head=attention_head_dim,
2404
2405
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
2406
2407
2408
2409
2410
                norm_num_groups=32,
                residual_connection=True,
                bias=True,
                upcast_softmax=True,
                _from_deprecated_attn_block=True,
2411
2412
2413
2414
2415
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2416
            self.resnet_up = ResnetBlock2D(
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2428
                use_in_shortcut=True,
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        hidden_states = self.attentions[0](hidden_states)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
2471
class SkipUpBlock2D(nn.Module):
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2496
                ResnetBlock2D(
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2513
            self.resnet_up = ResnetBlock2D(
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2525
                use_in_shortcut=True,
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample
Will Berman's avatar
Will Berman committed
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581


class ResnetUpsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
2582
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2603
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2623
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2648
2649
2650
2651
2652
2653
2654
2655
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, temb)

        return hidden_states


class SimpleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2680
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
2681
2682
2683
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2684
        skip_time_act=False,
2685
        only_cross_attention=False,
2686
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
2687
2688
2689
2690
2691
2692
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
2693
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
2694

2695
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2713
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2714
2715
                )
            )
2716
2717
2718
2719
2720

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
2721
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
2722
                Attention(
Will Berman's avatar
Will Berman committed
2723
2724
2725
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
2726
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
2727
2728
2729
2730
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
2731
                    only_cross_attention=only_cross_attention,
2732
                    cross_attention_norm=cross_attention_norm,
2733
                    processor=processor,
Will Berman's avatar
Will Berman committed
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2753
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
2765
2766
2767
2768
2769
2770
2771
2772
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
2773
    ):
2774
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
2787
2788
2789
2790
2791
2792
2793
        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2794
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
2795

2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
2810
                    mask,
2811
2812
2813
2814
2815
2816
2817
2818
                    cross_attention_kwargs,
                )[0]
            else:
                hidden_states = resnet(hidden_states, temb)

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
2819
                    attention_mask=mask,
2820
2821
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
2822
2823
2824
2825
2826
2827

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, temb)

        return hidden_states
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891


class KUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 5,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: Optional[int] = 32,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        k_in_channels = 2 * out_channels
        k_out_channels = in_channels
        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2892
2893
2894
2895
2896
2897
2898
2899
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class KCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
2921
        attention_head_dim=1,  # attention dim_head
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
        cross_attention_dim: int = 768,
        add_upsample: bool = True,
        upcast_attention: bool = False,
    ):
        super().__init__()
        resnets = []
        attentions = []

        is_first_block = in_channels == out_channels == temb_channels
        is_middle_block = in_channels != out_channels
        add_self_attention = True if is_first_block else False

        self.has_cross_attention = True
2935
        self.attention_head_dim = attention_head_dim
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970

        # in_channels, and out_channels for the block (k-unet)
        k_in_channels = out_channels if is_first_block else 2 * out_channels
        k_out_channels = in_channels

        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            if is_middle_block and (i == num_layers - 1):
                conv_2d_out_channels = k_out_channels
            else:
                conv_2d_out_channels = None

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    conv_2d_out_channels=conv_2d_out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    k_out_channels if (i == num_layers - 1) else out_channels,
2971
                    k_out_channels // attention_head_dim
2972
                    if (i == num_layers - 1)
2973
2974
                    else out_channels // attention_head_dim,
                    attention_head_dim,
2975
2976
2977
2978
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
2979
                    cross_attention_norm="layer_norm",
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
                    upcast_attention=upcast_attention,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
2996
2997
2998
2999
3000
3001
3002
3003
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
    ):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    cross_attention_kwargs,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
3038
3039
3040
3041
3042
3043
3044
3045
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
3046
                    encoder_attention_mask=encoder_attention_mask,
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


# can potentially later be renamed to `No-feed-forward` attention
class KAttentionBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        upcast_attention: bool = False,
        temb_channels: int = 768,  # for ada_group_norm
        add_self_attention: bool = False,
3085
        cross_attention_norm: Optional[str] = None,
3086
3087
3088
3089
3090
3091
3092
3093
        group_size: int = 32,
    ):
        super().__init__()
        self.add_self_attention = add_self_attention

        # 1. Self-Attn
        if add_self_attention:
            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3094
            self.attn1 = Attention(
3095
3096
3097
3098
3099
3100
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                cross_attention_dim=None,
3101
                cross_attention_norm=None,
3102
3103
3104
3105
            )

        # 2. Cross-Attn
        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3106
        self.attn2 = Attention(
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            cross_attention_norm=cross_attention_norm,
        )

    def _to_3d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)

    def _to_4d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)

    def forward(
        self,
3125
3126
3127
3128
3129
3130
3131
3132
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        # TODO: mark emb as non-optional (self.norm2 requires it).
        #       requires assessing impact of change to positional param interface.
        emb: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        # 1. Self-Attention
        if self.add_self_attention:
            norm_hidden_states = self.norm1(hidden_states, emb)

            height, weight = norm_hidden_states.shape[2:]
            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=None,
3146
                attention_mask=attention_mask,
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
                **cross_attention_kwargs,
            )
            attn_output = self._to_4d(attn_output, height, weight)

            hidden_states = attn_output + hidden_states

        # 2. Cross-Attention/None
        norm_hidden_states = self.norm2(hidden_states, emb)

        height, weight = norm_hidden_states.shape[2:]
        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
3161
            attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
3162
3163
3164
3165
3166
3167
3168
            **cross_attention_kwargs,
        )
        attn_output = self._to_4d(attn_output, height, weight)

        hidden_states = attn_output + hidden_states

        return hidden_states