unet_2d_blocks.py 121 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional, Tuple
15

16
import numpy as np
17
import torch
18
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
19
20
from torch import nn

21
from ..utils import is_torch_version, logging
22
from .activations import get_activation
23
from .attention import AdaGroupNorm
24
from .attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
25
from .dual_transformer_2d import DualTransformer2DModel
26
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
27
from .transformer_2d import Transformer2DModel
Patrick von Platen's avatar
Patrick von Platen committed
28
29


30
31
32
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


33
34
35
36
37
38
39
40
41
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
42
    transformer_layers_per_block=1,
43
    num_attention_heads=None,
44
    resnet_groups=None,
45
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
46
    downsample_padding=None,
47
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
48
    use_linear_projection=False,
49
    only_cross_attention=False,
50
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
51
    resnet_time_scale_shift="default",
52
    attention_type="default",
53
54
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
55
    cross_attention_norm=None,
56
    attention_head_dim=None,
57
    downsample_type=None,
58
):
59
60
61
62
63
64
65
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
69
70
71
72
73
74
75
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
76
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
77
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
78
79
80
81
82
83
84
85
86
87
88
89
90
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "ResnetDownsampleBlock2D":
        return ResnetDownsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
91
92
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
93
        )
Patrick von Platen's avatar
Patrick von Platen committed
94
    elif down_block_type == "AttnDownBlock2D":
95
96
97
98
        if add_downsample is False:
            downsample_type = None
        else:
            downsample_type = downsample_type or "conv"  # default to 'conv'
Patrick von Platen's avatar
Patrick von Platen committed
99
        return AttnDownBlock2D(
100
101
102
103
104
105
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
106
            resnet_groups=resnet_groups,
107
            downsample_padding=downsample_padding,
108
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
109
            resnet_time_scale_shift=resnet_time_scale_shift,
110
            downsample_type=downsample_type,
111
        )
Patrick von Platen's avatar
Patrick von Platen committed
112
    elif down_block_type == "CrossAttnDownBlock2D":
113
        if cross_attention_dim is None:
114
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
115
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
116
            num_layers=num_layers,
117
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
118
119
120
121
122
123
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
124
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
125
            downsample_padding=downsample_padding,
126
            cross_attention_dim=cross_attention_dim,
127
            num_attention_heads=num_attention_heads,
128
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
129
            use_linear_projection=use_linear_projection,
130
            only_cross_attention=only_cross_attention,
131
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
132
            resnet_time_scale_shift=resnet_time_scale_shift,
133
            attention_type=attention_type,
Will Berman's avatar
Will Berman committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        )
    elif down_block_type == "SimpleCrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
        return SimpleCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
148
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
149
            resnet_time_scale_shift=resnet_time_scale_shift,
150
151
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
152
            only_cross_attention=only_cross_attention,
153
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
154
        )
Patrick von Platen's avatar
Patrick von Platen committed
155
156
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
157
158
159
160
161
162
163
164
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
165
            resnet_time_scale_shift=resnet_time_scale_shift,
166
        )
Patrick von Platen's avatar
Patrick von Platen committed
167
168
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
169
170
171
172
173
174
175
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
176
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
177
            resnet_time_scale_shift=resnet_time_scale_shift,
178
        )
179
180
181
182
183
184
185
186
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
187
            resnet_groups=resnet_groups,
188
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
189
            resnet_time_scale_shift=resnet_time_scale_shift,
190
        )
Will Berman's avatar
Will Berman committed
191
192
193
194
195
196
197
198
199
200
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
201
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
202
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
203
        )
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    elif down_block_type == "KDownBlock2D":
        return KDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif down_block_type == "KCrossAttnDownBlock2D":
        return KCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
224
            attention_head_dim=attention_head_dim,
225
226
            add_self_attention=True if not add_downsample else False,
        )
Will Berman's avatar
Will Berman committed
227
    raise ValueError(f"{down_block_type} does not exist.")
228
229
230
231
232
233


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
234
235
    out_channels,
    prev_output_channel,
236
237
238
239
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
240
    transformer_layers_per_block=1,
241
    num_attention_heads=None,
242
    resnet_groups=None,
243
    cross_attention_dim=None,
244
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
245
    use_linear_projection=False,
246
    only_cross_attention=False,
247
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
248
    resnet_time_scale_shift="default",
249
    attention_type="default",
250
251
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
252
    cross_attention_norm=None,
253
    attention_head_dim=None,
254
    upsample_type=None,
255
):
256
257
258
259
260
261
262
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
263
264
265
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
266
267
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
268
269
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
270
271
272
273
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
274
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "ResnetUpsampleBlock2D":
        return ResnetUpsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
289
290
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
291
        )
Patrick von Platen's avatar
Patrick von Platen committed
292
    elif up_block_type == "CrossAttnUpBlock2D":
293
294
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
295
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
296
            num_layers=num_layers,
297
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
298
299
300
301
302
303
304
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
305
            resnet_groups=resnet_groups,
306
            cross_attention_dim=cross_attention_dim,
307
            num_attention_heads=num_attention_heads,
308
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
309
            use_linear_projection=use_linear_projection,
310
            only_cross_attention=only_cross_attention,
311
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
312
            resnet_time_scale_shift=resnet_time_scale_shift,
313
            attention_type=attention_type,
Will Berman's avatar
Will Berman committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        )
    elif up_block_type == "SimpleCrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
        return SimpleCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
329
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
330
            resnet_time_scale_shift=resnet_time_scale_shift,
331
332
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
333
            only_cross_attention=only_cross_attention,
334
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
335
        )
Patrick von Platen's avatar
Patrick von Platen committed
336
    elif up_block_type == "AttnUpBlock2D":
337
338
339
340
341
        if add_upsample is False:
            upsample_type = None
        else:
            upsample_type = upsample_type or "conv"  # default to 'conv'

Patrick von Platen's avatar
Patrick von Platen committed
342
        return AttnUpBlock2D(
343
344
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
345
346
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
347
348
349
            temb_channels=temb_channels,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
350
            resnet_groups=resnet_groups,
351
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
352
            resnet_time_scale_shift=resnet_time_scale_shift,
353
            upsample_type=upsample_type,
354
        )
Patrick von Platen's avatar
Patrick von Platen committed
355
356
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
357
358
359
360
361
362
363
364
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
Will Berman's avatar
Will Berman committed
365
            resnet_time_scale_shift=resnet_time_scale_shift,
366
        )
Patrick von Platen's avatar
Patrick von Platen committed
367
368
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
369
370
371
372
373
374
375
376
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
377
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
378
            resnet_time_scale_shift=resnet_time_scale_shift,
379
        )
380
381
382
383
384
385
386
387
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
388
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
389
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
390
            temb_channels=temb_channels,
391
        )
Will Berman's avatar
Will Berman committed
392
393
394
395
396
397
398
399
400
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
401
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
402
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
403
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
404
        )
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    elif up_block_type == "KUpBlock2D":
        return KUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif up_block_type == "KCrossAttnUpBlock2D":
        return KCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
425
            attention_head_dim=attention_head_dim,
426
427
        )

428
    raise ValueError(f"{up_block_type} does not exist.")
429
430


431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
class AutoencoderTinyBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, act_fn: str):
        super().__init__()
        act_fn = get_activation(act_fn)
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
        )
        self.skip = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
            if in_channels != out_channels
            else nn.Identity()
        )
        self.fuse = nn.ReLU()

    def forward(self, x):
        return self.fuse(self.conv(x) + self.skip(x))


Patrick von Platen's avatar
Patrick von Platen committed
453
454
455
456
457
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
458
        dropout: float = 0.0,
459
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
460
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
461
        resnet_time_scale_shift: str = "default",  # default, spatial
Patrick von Platen's avatar
Patrick von Platen committed
462
463
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
464
        resnet_pre_norm: bool = True,
Will Berman's avatar
Will Berman committed
465
        add_attention: bool = True,
466
        attention_head_dim=1,
Patrick von Platen's avatar
Patrick von Platen committed
467
468
469
        output_scale_factor=1.0,
    ):
        super().__init__()
470
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Will Berman's avatar
Will Berman committed
471
        self.add_attention = add_attention
Patrick von Platen's avatar
Patrick von Platen committed
472

473
474
        # there is always at least one resnet
        resnets = [
475
            ResnetBlock2D(
476
477
478
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
479
                eps=resnet_eps,
480
481
482
483
484
485
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
486
            )
487
488
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
489

490
491
492
493
494
495
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
            )
            attention_head_dim = in_channels

496
        for _ in range(num_layers):
Will Berman's avatar
Will Berman committed
497
498
            if self.add_attention:
                attentions.append(
499
                    Attention(
Will Berman's avatar
Will Berman committed
500
                        in_channels,
501
502
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
503
504
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
YiYi Xu's avatar
YiYi Xu committed
505
506
                        norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
507
508
509
510
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
Will Berman's avatar
Will Berman committed
511
                    )
512
                )
Will Berman's avatar
Will Berman committed
513
514
515
            else:
                attentions.append(None)

516
            resnets.append(
517
                ResnetBlock2D(
518
519
520
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
521
                    eps=resnet_eps,
522
523
524
525
526
527
528
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
529
530
            )

531
532
533
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Will Berman's avatar
Will Berman committed
534
    def forward(self, hidden_states, temb=None):
Patrick von Platen's avatar
Patrick von Platen committed
535
        hidden_states = self.resnets[0](hidden_states, temb)
536
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
537
            if attn is not None:
YiYi Xu's avatar
YiYi Xu committed
538
                hidden_states = attn(hidden_states, temb=temb)
Patrick von Platen's avatar
Patrick von Platen committed
539
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
540

541
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
542

543

Patrick von Platen's avatar
Patrick von Platen committed
544
545
546
547
548
549
550
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
551
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
552
553
554
555
556
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
557
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
558
559
        output_scale_factor=1.0,
        cross_attention_dim=1280,
560
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
561
        use_linear_projection=False,
562
        upcast_attention=False,
563
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
564
565
566
    ):
        super().__init__()

567
        self.has_cross_attention = True
568
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
569
570
571
572
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
573
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
589
590
591
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
592
593
                        num_attention_heads,
                        in_channels // num_attention_heads,
594
                        in_channels=in_channels,
595
                        num_layers=transformer_layers_per_block,
596
597
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
598
                        use_linear_projection=use_linear_projection,
599
                        upcast_attention=upcast_attention,
600
                        attention_type=attention_type,
601
602
603
604
605
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
606
607
                        num_attention_heads,
                        in_channels // num_attention_heads,
608
609
610
611
612
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
613
614
                )
            resnets.append(
615
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

632
633
        self.gradient_checkpointing = False

634
    def forward(
635
636
637
638
639
640
641
642
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
643
644
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
645
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
646
647
648
649
650
651
652
653
654
655
656
657
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
ethansmith2000's avatar
ethansmith2000 committed
658
                hidden_states = attn(
659
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
660
661
662
663
664
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
                )[0]
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
681
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

        return hidden_states


class UNetMidBlock2DSimpleCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
698
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
699
700
        output_scale_factor=1.0,
        cross_attention_dim=1280,
701
        skip_time_act=False,
702
        only_cross_attention=False,
703
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
704
705
706
707
708
    ):
        super().__init__()

        self.has_cross_attention = True

709
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
710
711
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

712
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
727
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
728
729
730
731
732
            )
        ]
        attentions = []

        for _ in range(num_layers):
733
734
735
736
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
737
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
738
                Attention(
Will Berman's avatar
Will Berman committed
739
740
741
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
742
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
743
744
745
746
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
747
                    only_cross_attention=only_cross_attention,
748
                    cross_attention_norm=cross_attention_norm,
749
                    processor=processor,
Will Berman's avatar
Will Berman committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
764
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
765
766
767
768
769
770
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

771
    def forward(
772
773
774
775
776
777
778
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
779
780
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
781
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
782
783
784
785
786
787
788
789
790
791
792
793

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

794
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
795
796
797
798
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
799
                encoder_hidden_states=encoder_hidden_states,
800
                attention_mask=mask,
801
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
802
803
804
            )

            # resnet
805
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
806
807
808
809

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
810
class AttnDownBlock2D(nn.Module):
811
812
813
814
815
816
817
818
819
820
821
822
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
823
        attention_head_dim=1,
824
        output_scale_factor=1.0,
825
        downsample_padding=1,
826
        downsample_type="conv",
827
828
829
830
    ):
        super().__init__()
        resnets = []
        attentions = []
831
        self.downsample_type = downsample_type
832

833
834
835
836
837
838
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

839
840
841
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
842
                ResnetBlock2D(
843
844
845
846
847
848
849
850
851
852
853
854
855
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
856
                Attention(
857
                    out_channels,
858
859
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
860
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
861
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
862
                    norm_num_groups=resnet_groups,
863
864
865
866
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
867
868
869
870
871
872
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

873
        if downsample_type == "conv":
874
            self.downsamplers = nn.ModuleList(
875
876
                [
                    Downsample2D(
877
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
878
879
                    )
                ]
880
            )
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
        elif downsample_type == "resnet":
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        down=True,
                    )
                ]
            )
899
900
901
        else:
            self.downsamplers = None

902
903
904
905
906
    def forward(self, hidden_states, temb=None, upsample_size=None, cross_attention_kwargs=None):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        lora_scale = cross_attention_kwargs.get("scale", 1.0)

907
908
909
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
910
911
912
            cross_attention_kwargs.update({"scale": lora_scale})
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
913
            output_states = output_states + (hidden_states,)
914
915
916

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
917
                if self.downsample_type == "resnet":
918
                    hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale)
919
                else:
920
                    hidden_states = downsampler(hidden_states, scale=lora_scale)
921
922
923
924
925
926

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
927
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
928
929
930
931
932
933
934
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
935
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
936
937
938
939
940
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
941
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
942
943
944
945
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
946
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
947
        use_linear_projection=False,
948
        only_cross_attention=False,
949
        upcast_attention=False,
950
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
951
952
953
954
955
    ):
        super().__init__()
        resnets = []
        attentions = []

956
        self.has_cross_attention = True
957
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
958
959
960
961

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
962
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
963
964
965
966
967
968
969
970
971
972
973
974
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
975
976
977
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
978
979
                        num_attention_heads,
                        out_channels // num_attention_heads,
980
                        in_channels=out_channels,
981
                        num_layers=transformer_layers_per_block,
982
983
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
984
                        use_linear_projection=use_linear_projection,
985
                        only_cross_attention=only_cross_attention,
986
                        upcast_attention=upcast_attention,
987
                        attention_type=attention_type,
988
989
990
991
992
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
993
994
                        num_attention_heads,
                        out_channels // num_attention_heads,
995
996
997
998
999
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1000
1001
1002
1003
1004
1005
1006
1007
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1008
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1009
1010
1011
1012
1013
1014
                    )
                ]
            )
        else:
            self.downsamplers = None

1015
1016
        self.gradient_checkpointing = False

1017
    def forward(
1018
1019
1020
1021
1022
1023
1024
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
1025
        additional_residuals=None,
1026
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1027
1028
        output_states = ()

1029
1030
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

Will Berman's avatar
Will Berman committed
1031
1032
1033
        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
1034
1035
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1036
                def create_custom_forward(module, return_dict=None):
1037
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1038
1039
1040
1041
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1042
1043
1044

                    return custom_forward

1045
1046
1047
1048
1049
1050
1051
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1052
                hidden_states = attn(
1053
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1054
1055
1056
1057
1058
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1059
                )[0]
1060
            else:
1061
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1062
1063
1064
1065
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1066
1067
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1068
1069
                    return_dict=False,
                )[0]
1070

Will Berman's avatar
Will Berman committed
1071
1072
1073
1074
            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

1075
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1076
1077
1078

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1079
                hidden_states = downsampler(hidden_states, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1080

1081
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1082
1083
1084
1085

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1086
class DownBlock2D(nn.Module):
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
1101
        downsample_padding=1,
1102
1103
1104
1105
1106
1107
1108
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1109
                ResnetBlock2D(
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
1127
1128
                [
                    Downsample2D(
1129
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1130
1131
                    )
                ]
1132
1133
1134
1135
            )
        else:
            self.downsamplers = None

1136
1137
        self.gradient_checkpointing = False

1138
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
1139
1140
1141
        output_states = ()

        for resnet in self.resnets:
1142
1143
1144
1145
1146
1147
1148
1149
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1150
1151
1152
1153
1154
1155
1156
1157
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1158
            else:
1159
                hidden_states = resnet(hidden_states, temb, scale=scale)
1160

1161
            output_states = output_states + (hidden_states,)
1162
1163
1164

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1165
                hidden_states = downsampler(hidden_states, scale=scale)
1166

1167
            output_states = output_states + (hidden_states,)
1168
1169
1170
1171

        return hidden_states, output_states


1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1194
                ResnetBlock2D(
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1214
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1215
1216
1217
1218
1219
1220
                    )
                ]
            )
        else:
            self.downsamplers = None

1221
    def forward(self, hidden_states, scale: float = 1.0):
1222
        for resnet in self.resnets:
1223
            hidden_states = resnet(hidden_states, temb=None, scale=scale)
1224
1225
1226

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1227
                hidden_states = downsampler(hidden_states, scale)
1228
1229
1230
1231

        return hidden_states


1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1244
        attention_head_dim=1,
1245
1246
1247
1248
1249
1250
1251
1252
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

1253
1254
1255
1256
1257
1258
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1259
1260
1261
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1262
                ResnetBlock2D(
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1276
                Attention(
1277
                    out_channels,
1278
1279
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1280
1281
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1282
                    norm_num_groups=resnet_groups,
1283
1284
1285
1286
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1297
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1298
1299
1300
1301
1302
1303
                    )
                ]
            )
        else:
            self.downsamplers = None

1304
    def forward(self, hidden_states, scale: float = 1.0):
1305
        for resnet, attn in zip(self.resnets, self.attentions):
1306
1307
1308
            hidden_states = resnet(hidden_states, temb=None, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1309
1310
1311

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1312
                hidden_states = downsampler(hidden_states, scale)
1313
1314
1315
1316

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1317
class AttnSkipDownBlock2D(nn.Module):
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
1329
        attention_head_dim=1,
1330
1331
1332
1333
1334
1335
1336
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

1337
1338
1339
1340
1341
1342
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1343
1344
1345
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1346
                ResnetBlock2D(
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
1361
                Attention(
1362
                    out_channels,
1363
1364
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1365
1366
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
1367
1368
1369
1370
1371
                    norm_num_groups=32,
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1372
1373
1374
1375
                )
            )

        if add_downsample:
1376
            self.resnet_down = ResnetBlock2D(
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1387
                use_in_shortcut=True,
1388
1389
1390
                down=True,
                kernel="fir",
            )
1391
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1392
1393
1394
1395
1396
1397
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

1398
    def forward(self, hidden_states, temb=None, skip_sample=None, scale: float = 1.0):
1399
1400
1401
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
1402
1403
1404
            hidden_states = resnet(hidden_states, temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1405
1406
1407
            output_states += (hidden_states,)

        if self.downsamplers is not None:
1408
            hidden_states = self.resnet_down(hidden_states, temb, scale=scale)
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1419
class SkipDownBlock2D(nn.Module):
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1441
                ResnetBlock2D(
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
1457
            self.resnet_down = ResnetBlock2D(
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1468
                use_in_shortcut=True,
1469
1470
1471
                down=True,
                kernel="fir",
            )
1472
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1473
1474
1475
1476
1477
1478
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

1479
    def forward(self, hidden_states, temb=None, skip_sample=None, scale: float = 1.0):
1480
1481
1482
        output_states = ()

        for resnet in self.resnets:
1483
            hidden_states = resnet(hidden_states, temb, scale)
1484
1485
1486
            output_states += (hidden_states,)

        if self.downsamplers is not None:
1487
            hidden_states = self.resnet_down(hidden_states, temb, scale)
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Will Berman's avatar
Will Berman committed
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
class ResnetDownsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
1513
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1532
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1552
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1553
1554
1555
1556
1557
1558
1559
1560
1561
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1562
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
Will Berman's avatar
Will Berman committed
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1574
1575
1576
1577
1578
1579
1580
1581
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
1582
            else:
1583
                hidden_states = resnet(hidden_states, temb, scale)
Will Berman's avatar
Will Berman committed
1584

1585
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1586
1587
1588

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1589
                hidden_states = downsampler(hidden_states, temb, scale)
Will Berman's avatar
Will Berman committed
1590

1591
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608

        return hidden_states, output_states


class SimpleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1609
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
1610
1611
1612
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_downsample=True,
1613
        skip_time_act=False,
1614
        only_cross_attention=False,
1615
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
1616
1617
1618
1619
1620
1621
1622
1623
    ):
        super().__init__()

        self.has_cross_attention = True

        resnets = []
        attentions = []

1624
1625
        self.attention_head_dim = attention_head_dim
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1641
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1642
1643
                )
            )
1644
1645
1646
1647
1648

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1649
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1650
                Attention(
Will Berman's avatar
Will Berman committed
1651
1652
1653
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
1654
                    dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
1655
1656
1657
1658
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1659
                    only_cross_attention=only_cross_attention,
1660
                    cross_attention_norm=cross_attention_norm,
1661
                    processor=processor,
Will Berman's avatar
Will Berman committed
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1681
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1682
1683
1684
1685
1686
1687
1688
1689
1690
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1691
    def forward(
1692
1693
1694
1695
1696
1697
1698
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1699
    ):
Will Berman's avatar
Will Berman committed
1700
        output_states = ()
1701
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
1702

1703
1704
        lora_scale = cross_attention_kwargs.get("scale", 1.0)

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
1716
        for resnet, attn in zip(self.resnets, self.attentions):
1717
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
1718

1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
ethansmith2000's avatar
ethansmith2000 committed
1729
                hidden_states = attn(
1730
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1731
1732
1733
1734
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=mask,
                    **cross_attention_kwargs,
                )
1735
            else:
1736
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1737
1738
1739
1740

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
1741
                    attention_mask=mask,
1742
1743
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
1744

1745
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1746
1747
1748

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1749
                hidden_states = downsampler(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
1750

1751
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1752
1753
1754
1755

        return hidden_states, output_states


1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
class KDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
        add_downsample=False,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            # YiYi's comments- might be able to use FirDownsample2D, look into details later
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1802
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1814
1815
1816
1817
1818
1819
1820
1821
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1822
            else:
1823
                hidden_states = resnet(hidden_states, temb, scale)
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


class KCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        cross_attention_dim: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_group_size: int = 32,
        add_downsample=True,
1845
        attention_head_dim: int = 64,
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
        add_self_attention: bool = False,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    out_channels,
1878
1879
                    out_channels // attention_head_dim,
                    attention_head_dim,
1880
1881
1882
1883
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
1884
                    cross_attention_norm="layer_norm",
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
                    group_size=resnet_group_size,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
1900
1901
1902
1903
1904
1905
1906
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1907
1908
    ):
        output_states = ()
1909
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1923
1924
1925
1926
1927
1928
1929
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1930
                hidden_states = attn(
1931
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1932
1933
1934
1935
1936
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
1937
                )
1938
            else:
1939
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1940
1941
1942
1943
1944
1945
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
1946
                    encoder_attention_mask=encoder_attention_mask,
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
                )

            if self.downsamplers is None:
                output_states += (None,)
            else:
                output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1961
class AttnUpBlock2D(nn.Module):
1962
1963
1964
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1965
1966
        prev_output_channel: int,
        out_channels: int,
1967
1968
1969
1970
1971
1972
1973
1974
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1975
        attention_head_dim=1,
1976
        output_scale_factor=1.0,
1977
        upsample_type="conv",
1978
1979
1980
1981
1982
    ):
        super().__init__()
        resnets = []
        attentions = []

1983
1984
        self.upsample_type = upsample_type

1985
1986
1987
1988
1989
1990
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1991
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1992
1993
1994
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1995
            resnets.append(
1996
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1997
1998
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2010
                Attention(
Patrick von Platen's avatar
Patrick von Platen committed
2011
                    out_channels,
2012
2013
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2014
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
2015
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
2016
                    norm_num_groups=resnet_groups,
2017
2018
2019
2020
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2021
2022
2023
2024
2025
2026
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

2027
        if upsample_type == "conv":
Patrick von Platen's avatar
Patrick von Platen committed
2028
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
        elif upsample_type == "resnet":
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        up=True,
                    )
                ]
            )
2047
2048
2049
        else:
            self.upsamplers = None

2050
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
2051
2052
2053
2054
2055
2056
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2057
2058
2059
            hidden_states = resnet(hidden_states, temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
2060
2061
2062

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2063
                if self.upsample_type == "resnet":
2064
                    hidden_states = upsampler(hidden_states, temb=temb, scale=scale)
2065
                else:
2066
                    hidden_states = upsampler(hidden_states, scale=scale)
2067
2068
2069
2070

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2071
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
2072
2073
2074
2075
2076
2077
2078
2079
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
2080
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
2081
2082
2083
2084
2085
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2086
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
2087
2088
2089
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2090
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
2091
        use_linear_projection=False,
2092
        only_cross_attention=False,
2093
        upcast_attention=False,
2094
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
2095
2096
2097
2098
2099
    ):
        super().__init__()
        resnets = []
        attentions = []

2100
        self.has_cross_attention = True
2101
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
2102
2103
2104
2105
2106
2107

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
2108
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
2121
2122
2123
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
2124
2125
                        num_attention_heads,
                        out_channels // num_attention_heads,
2126
                        in_channels=out_channels,
2127
                        num_layers=transformer_layers_per_block,
2128
2129
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
2130
                        use_linear_projection=use_linear_projection,
2131
                        only_cross_attention=only_cross_attention,
2132
                        upcast_attention=upcast_attention,
2133
                        attention_type=attention_type,
2134
2135
2136
2137
2138
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
2139
2140
                        num_attention_heads,
                        out_channels // num_attention_heads,
2141
2142
2143
2144
2145
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
2146
2147
2148
2149
2150
2151
2152
2153
2154
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2155
2156
2157
2158
        self.gradient_checkpointing = False

    def forward(
        self,
2159
2160
2161
2162
2163
2164
2165
2166
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2167
    ):
2168
2169
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

Patrick von Platen's avatar
Patrick von Platen committed
2170
2171
2172
2173
2174
2175
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2176
2177
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
2178
                def create_custom_forward(module, return_dict=None):
2179
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
2180
2181
2182
2183
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
2184
2185
2186

                    return custom_forward

2187
2188
2189
2190
2191
2192
2193
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
2194
                hidden_states = attn(
2195
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
2196
2197
2198
2199
2200
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
2201
                )[0]
2202
            else:
2203
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
2204
2205
2206
2207
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
2208
2209
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
2210
2211
                    return_dict=False,
                )[0]
Patrick von Platen's avatar
Patrick von Platen committed
2212
2213
2214

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2215
                hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2216
2217
2218
2219

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2220
class UpBlock2D(nn.Module):
2221
2222
2223
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2224
2225
        prev_output_channel: int,
        out_channels: int,
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2241
2242
2243
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2244
            resnets.append(
2245
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2246
2247
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
2262
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2263
2264
2265
        else:
            self.upsamplers = None

2266
2267
        self.gradient_checkpointing = False

2268
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
2269
2270
2271
2272
2273
2274
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2275
2276
2277
2278
2279
2280
2281
2282
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2283
2284
2285
2286
2287
2288
2289
2290
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2291
            else:
2292
                hidden_states = resnet(hidden_states, temb, scale=scale)
2293
2294
2295

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2296
                hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
2297
2298

        return hidden_states
2299
2300


2301
2302
2303
2304
2305
2306
2307
2308
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
2309
        resnet_time_scale_shift: str = "default",  # default, spatial
2310
2311
2312
2313
2314
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2315
        temb_channels=None,
2316
2317
2318
2319
2320
2321
2322
2323
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2324
                ResnetBlock2D(
2325
2326
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2327
                    temb_channels=temb_channels,
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2345
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
2346
        for resnet in self.resnets:
2347
            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
2348
2349
2350
2351
2352
2353
2354
2355

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2368
        attention_head_dim=1,
2369
2370
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2371
        temb_channels=None,
2372
2373
2374
2375
2376
    ):
        super().__init__()
        resnets = []
        attentions = []

2377
2378
2379
2380
2381
2382
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2383
2384
2385
2386
        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2387
                ResnetBlock2D(
2388
2389
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2390
                    temb_channels=temb_channels,
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2401
                Attention(
2402
                    out_channels,
2403
2404
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2405
2406
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
2407
                    norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
YiYi Xu's avatar
YiYi Xu committed
2408
                    spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
2409
2410
2411
2412
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2424
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
2425
        for resnet, attn in zip(self.resnets, self.attentions):
2426
2427
2428
            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs)
2429
2430
2431

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2432
                hidden_states = upsampler(hidden_states, scale=scale)
2433
2434
2435
2436

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2437
class AttnSkipUpBlock2D(nn.Module):
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
2450
        attention_head_dim=1,
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2463
                ResnetBlock2D(
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

2478
2479
2480
2481
2482
2483
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2484
        self.attentions.append(
2485
            Attention(
2486
                out_channels,
2487
2488
                heads=out_channels // attention_head_dim,
                dim_head=attention_head_dim,
2489
2490
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
2491
2492
2493
2494
2495
                norm_num_groups=32,
                residual_connection=True,
                bias=True,
                upcast_softmax=True,
                _from_deprecated_attn_block=True,
2496
2497
2498
2499
2500
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2501
            self.resnet_up = ResnetBlock2D(
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2513
                use_in_shortcut=True,
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

2528
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None, scale: float = 1.0):
2529
2530
2531
2532
2533
2534
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2535
            hidden_states = resnet(hidden_states, temb, scale=scale)
2536

2537
2538
        cross_attention_kwargs = {"scale": scale}
        hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs)
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

2552
            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
2553
2554
2555
2556

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
2557
class SkipUpBlock2D(nn.Module):
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2582
                ResnetBlock2D(
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2599
            self.resnet_up = ResnetBlock2D(
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2611
                use_in_shortcut=True,
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

2626
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None, scale: float = 1.0):
2627
2628
2629
2630
2631
2632
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2633
            hidden_states = resnet(hidden_states, temb, scale=scale)
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

2647
            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
2648
2649

        return hidden_states, skip_sample
Will Berman's avatar
Will Berman committed
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667


class ResnetUpsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
2668
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2689
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2709
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2710
2711
2712
2713
2714
2715
2716
2717
2718
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

2719
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
Will Berman's avatar
Will Berman committed
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2734
2735
2736
2737
2738
2739
2740
2741
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
2742
            else:
2743
                hidden_states = resnet(hidden_states, temb, scale=scale)
Will Berman's avatar
Will Berman committed
2744
2745
2746

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2747
                hidden_states = upsampler(hidden_states, temb, scale=scale)
Will Berman's avatar
Will Berman committed
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765

        return hidden_states


class SimpleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2766
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
2767
2768
2769
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2770
        skip_time_act=False,
2771
        only_cross_attention=False,
2772
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
2773
2774
2775
2776
2777
2778
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
2779
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
2780

2781
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2799
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2800
2801
                )
            )
2802
2803
2804
2805
2806

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
2807
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
2808
                Attention(
Will Berman's avatar
Will Berman committed
2809
2810
2811
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
2812
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
2813
2814
2815
2816
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
2817
                    only_cross_attention=only_cross_attention,
2818
                    cross_attention_norm=cross_attention_norm,
2819
                    processor=processor,
Will Berman's avatar
Will Berman committed
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2839
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
2851
2852
2853
2854
2855
2856
2857
2858
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
2859
    ):
2860
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
2861

2862
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
2874
2875
2876
2877
2878
2879
2880
        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2881
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
2882

2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
ethansmith2000's avatar
ethansmith2000 committed
2893
                hidden_states = attn(
2894
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
2895
2896
2897
2898
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=mask,
                    **cross_attention_kwargs,
                )
2899
            else:
2900
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
2901
2902
2903
2904

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
2905
                    attention_mask=mask,
2906
2907
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
2908
2909
2910

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2911
                hidden_states = upsampler(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
2912
2913

        return hidden_states
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963


class KUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 5,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: Optional[int] = 32,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        k_in_channels = 2 * out_channels
        k_out_channels = in_channels
        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

2964
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2978
2979
2980
2981
2982
2983
2984
2985
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2986
            else:
2987
                hidden_states = resnet(hidden_states, temb, scale=scale)
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class KCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
3007
        attention_head_dim=1,  # attention dim_head
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
        cross_attention_dim: int = 768,
        add_upsample: bool = True,
        upcast_attention: bool = False,
    ):
        super().__init__()
        resnets = []
        attentions = []

        is_first_block = in_channels == out_channels == temb_channels
        is_middle_block = in_channels != out_channels
        add_self_attention = True if is_first_block else False

        self.has_cross_attention = True
3021
        self.attention_head_dim = attention_head_dim
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056

        # in_channels, and out_channels for the block (k-unet)
        k_in_channels = out_channels if is_first_block else 2 * out_channels
        k_out_channels = in_channels

        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            if is_middle_block and (i == num_layers - 1):
                conv_2d_out_channels = k_out_channels
            else:
                conv_2d_out_channels = None

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    conv_2d_out_channels=conv_2d_out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    k_out_channels if (i == num_layers - 1) else out_channels,
3057
                    k_out_channels // attention_head_dim
3058
                    if (i == num_layers - 1)
3059
3060
                    else out_channels // attention_head_dim,
                    attention_head_dim,
3061
3062
3063
3064
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
3065
                    cross_attention_norm="layer_norm",
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
                    upcast_attention=upcast_attention,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
3082
3083
3084
3085
3086
3087
3088
3089
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3090
3091
3092
3093
3094
    ):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

3095
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

3108
3109
3110
3111
3112
3113
3114
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
3115
                hidden_states = attn(
3116
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
3117
3118
3119
3120
3121
3122
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                )
3123
            else:
3124
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
3125
3126
3127
3128
3129
3130
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
3131
                    encoder_attention_mask=encoder_attention_mask,
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


# can potentially later be renamed to `No-feed-forward` attention
class KAttentionBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        upcast_attention: bool = False,
        temb_channels: int = 768,  # for ada_group_norm
        add_self_attention: bool = False,
3170
        cross_attention_norm: Optional[str] = None,
3171
3172
3173
3174
3175
3176
3177
3178
        group_size: int = 32,
    ):
        super().__init__()
        self.add_self_attention = add_self_attention

        # 1. Self-Attn
        if add_self_attention:
            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3179
            self.attn1 = Attention(
3180
3181
3182
3183
3184
3185
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                cross_attention_dim=None,
3186
                cross_attention_norm=None,
3187
3188
3189
3190
            )

        # 2. Cross-Attn
        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3191
        self.attn2 = Attention(
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            cross_attention_norm=cross_attention_norm,
        )

    def _to_3d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)

    def _to_4d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)

    def forward(
        self,
3210
3211
3212
3213
3214
3215
3216
3217
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        # TODO: mark emb as non-optional (self.norm2 requires it).
        #       requires assessing impact of change to positional param interface.
        emb: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        # 1. Self-Attention
        if self.add_self_attention:
            norm_hidden_states = self.norm1(hidden_states, emb)

            height, weight = norm_hidden_states.shape[2:]
            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=None,
3231
                attention_mask=attention_mask,
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
                **cross_attention_kwargs,
            )
            attn_output = self._to_4d(attn_output, height, weight)

            hidden_states = attn_output + hidden_states

        # 2. Cross-Attention/None
        norm_hidden_states = self.norm2(hidden_states, emb)

        height, weight = norm_hidden_states.shape[2:]
        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
3246
            attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
3247
3248
3249
3250
3251
3252
3253
            **cross_attention_kwargs,
        )
        attn_output = self._to_4d(attn_output, height, weight)

        hidden_states = attn_output + hidden_states

        return hidden_states