unet_2d_blocks.py 58.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import numpy as np
15
import torch
Patrick von Platen's avatar
Patrick von Platen committed
16
17
from torch import nn

18
from .attention import AttentionBlock, DualTransformer2DModel, Transformer2DModel
19
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
Patrick von Platen's avatar
Patrick von Platen committed
20
21


22
23
24
25
26
27
28
29
30
31
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
32
    resnet_groups=None,
33
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
34
    downsample_padding=None,
35
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
36
    use_linear_projection=False,
37
):
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
41
42
43
44
45
46
47
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
48
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
49
            downsample_padding=downsample_padding,
50
        )
Patrick von Platen's avatar
Patrick von Platen committed
51
52
    elif down_block_type == "AttnDownBlock2D":
        return AttnDownBlock2D(
53
54
55
56
57
58
59
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
60
            resnet_groups=resnet_groups,
61
            downsample_padding=downsample_padding,
62
63
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
64
    elif down_block_type == "CrossAttnDownBlock2D":
65
        if cross_attention_dim is None:
66
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
67
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
68
69
70
71
72
73
74
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
75
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
76
            downsample_padding=downsample_padding,
77
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
78
            attn_num_head_channels=attn_num_head_channels,
79
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
80
            use_linear_projection=use_linear_projection,
Patrick von Platen's avatar
Patrick von Platen committed
81
        )
Patrick von Platen's avatar
Patrick von Platen committed
82
83
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
84
85
86
87
88
89
90
91
92
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
        )
Patrick von Platen's avatar
Patrick von Platen committed
93
94
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
95
96
97
98
99
100
101
102
103
104
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
        )
105
106
107
108
109
110
111
112
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
113
            resnet_groups=resnet_groups,
114
115
            downsample_padding=downsample_padding,
        )
Will Berman's avatar
Will Berman committed
116
117
118
119
120
121
122
123
124
125
126
127
128
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
        )
    raise ValueError(f"{down_block_type} does not exist.")
129
130
131
132
133
134


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
135
136
    out_channels,
    prev_output_channel,
137
138
139
140
141
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
142
    resnet_groups=None,
143
    cross_attention_dim=None,
144
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
145
    use_linear_projection=False,
146
):
Patrick von Platen's avatar
Patrick von Platen committed
147
148
149
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
150
151
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
152
153
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
154
155
156
157
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
158
            resnet_groups=resnet_groups,
159
        )
Patrick von Platen's avatar
Patrick von Platen committed
160
    elif up_block_type == "CrossAttnUpBlock2D":
161
162
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
163
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
164
165
166
167
168
169
170
171
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
172
            resnet_groups=resnet_groups,
173
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
174
            attn_num_head_channels=attn_num_head_channels,
175
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
176
            use_linear_projection=use_linear_projection,
Patrick von Platen's avatar
Patrick von Platen committed
177
        )
Patrick von Platen's avatar
Patrick von Platen committed
178
179
    elif up_block_type == "AttnUpBlock2D":
        return AttnUpBlock2D(
180
181
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
182
183
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
184
185
186
187
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
188
            resnet_groups=resnet_groups,
189
190
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
191
192
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
193
194
195
196
197
198
199
200
201
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
Patrick von Platen's avatar
Patrick von Platen committed
202
203
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
204
205
206
207
208
209
210
211
212
213
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            attn_num_head_channels=attn_num_head_channels,
        )
214
215
216
217
218
219
220
221
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
222
            resnet_groups=resnet_groups,
223
        )
Will Berman's avatar
Will Berman committed
224
225
226
227
228
229
230
231
232
233
234
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            attn_num_head_channels=attn_num_head_channels,
        )
235
    raise ValueError(f"{up_block_type} does not exist.")
236
237


Patrick von Platen's avatar
Patrick von Platen committed
238
239
240
241
242
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
243
        dropout: float = 0.0,
244
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
245
246
247
248
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
249
        resnet_pre_norm: bool = True,
250
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
251
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
252
        output_scale_factor=1.0,
253
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
254
255
256
    ):
        super().__init__()

Patrick von Platen's avatar
Patrick von Platen committed
257
        self.attention_type = attention_type
258
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Patrick von Platen's avatar
Patrick von Platen committed
259

260
261
        # there is always at least one resnet
        resnets = [
262
            ResnetBlock2D(
263
264
265
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
266
                eps=resnet_eps,
267
268
269
270
271
272
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
273
            )
274
275
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
276

277
278
        for _ in range(num_layers):
            attentions.append(
279
                AttentionBlock(
280
281
282
                    in_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
283
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
284
                    norm_num_groups=resnet_groups,
285
                )
286
            )
287
            resnets.append(
288
                ResnetBlock2D(
289
290
291
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
292
                    eps=resnet_eps,
293
294
295
296
297
298
299
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
300
301
            )

302
303
304
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Patrick von Platen's avatar
Patrick von Platen committed
305
306
    def forward(self, hidden_states, temb=None, encoder_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
307
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Patrick von Platen's avatar
Patrick von Platen committed
308
309
            if self.attention_type == "default":
                hidden_states = attn(hidden_states)
310
            else:
Patrick von Platen's avatar
Patrick von Platen committed
311
312
                hidden_states = attn(hidden_states, encoder_states)
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
313

314
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
315

316

Patrick von Platen's avatar
Patrick von Platen committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=1.0,
        cross_attention_dim=1280,
333
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
334
        use_linear_projection=False,
Patrick von Platen's avatar
Patrick von Platen committed
335
336
337
338
339
        **kwargs,
    ):
        super().__init__()

        self.attention_type = attention_type
340
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
341
342
343
344
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
345
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
361
362
363
364
365
366
367
368
369
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
370
                        use_linear_projection=use_linear_projection,
371
372
373
374
375
376
377
378
379
380
381
382
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
383
384
                )
            resnets.append(
385
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )
        if slice_size is not None and slice_size > self.attn_num_head_channels:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )

        for attn in self.attentions:
            attn._set_attention_slice(slice_size)

417
418
419
420
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for attn in self.attentions:
            attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

Patrick von Platen's avatar
Patrick von Platen committed
421
422
423
    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
424
            hidden_states = attn(hidden_states, encoder_hidden_states).sample
Patrick von Platen's avatar
Patrick von Platen committed
425
426
427
428
429
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
430
class AttnDownBlock2D(nn.Module):
431
432
433
434
435
436
437
438
439
440
441
442
443
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
444
        attention_type="default",
445
        output_scale_factor=1.0,
446
        downsample_padding=1,
447
448
449
450
451
452
        add_downsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

Patrick von Platen's avatar
Patrick von Platen committed
453
454
        self.attention_type = attention_type

455
456
457
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
458
                ResnetBlock2D(
459
460
461
462
463
464
465
466
467
468
469
470
471
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
472
                AttentionBlock(
473
474
475
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
476
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
477
                    norm_num_groups=resnet_groups,
478
479
480
481
482
483
484
485
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
486
487
                [
                    Downsample2D(
488
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
489
490
                    )
                ]
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
512
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        attention_type="default",
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
531
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
532
        use_linear_projection=False,
Patrick von Platen's avatar
Patrick von Platen committed
533
534
535
536
537
538
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.attention_type = attention_type
539
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
540
541
542
543

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
544
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
545
546
547
548
549
550
551
552
553
554
555
556
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
557
558
559
560
561
562
563
564
565
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
566
                        use_linear_projection=use_linear_projection,
567
568
569
570
571
572
573
574
575
576
577
578
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
579
580
581
582
583
584
585
586
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
587
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
588
589
590
591
592
593
                    )
                ]
            )
        else:
            self.downsamplers = None

594
595
        self.gradient_checkpointing = False

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )
        if slice_size is not None and slice_size > self.attn_num_head_channels:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )

        for attn in self.attentions:
            attn._set_attention_slice(slice_size)

611
612
613
614
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for attn in self.attentions:
            attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

Patrick von Platen's avatar
Patrick von Platen committed
615
616
617
618
    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
619
620
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
621
                def create_custom_forward(module, return_dict=None):
622
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
623
624
625
626
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
627
628
629
630
631

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
632
633
                    create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
                )[0]
634
635
            else:
                hidden_states = resnet(hidden_states, temb)
Will Berman's avatar
Will Berman committed
636
                hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
637

Patrick von Platen's avatar
Patrick von Platen committed
638
639
640
641
642
643
644
645
646
647
648
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
649
class DownBlock2D(nn.Module):
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
664
        downsample_padding=1,
665
666
667
668
669
670
671
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
672
                ResnetBlock2D(
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
690
691
                [
                    Downsample2D(
692
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
693
694
                    )
                ]
695
696
697
698
            )
        else:
            self.downsamplers = None

699
700
        self.gradient_checkpointing = False

701
702
703
704
    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
705
706
707
708
709
710
711
712
713
714
715
716
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

717
718
719
720
721
722
723
724
725
726
727
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
750
                ResnetBlock2D(
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
770
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
812
                ResnetBlock2D(
813
814
815
816
817
818
819
820
821
822
823
824
825
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
826
                AttentionBlock(
827
828
829
830
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
831
                    norm_num_groups=resnet_groups,
832
833
834
835
836
837
838
839
840
841
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
842
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
861
class AttnSkipDownBlock2D(nn.Module):
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=np.sqrt(2.0),
        downsample_padding=1,
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        self.attention_type = attention_type

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
888
                ResnetBlock2D(
889
890
891
892
893
894
895
896
897
898
899
900
901
902
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
903
                AttentionBlock(
904
905
906
907
908
909
910
911
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
                )
            )

        if add_downsample:
912
            self.resnet_down = ResnetBlock2D(
913
914
915
916
917
918
919
920
921
922
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
923
                use_in_shortcut=True,
924
925
926
                down=True,
                kernel="fir",
            )
927
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
954
class SkipDownBlock2D(nn.Module):
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
976
                ResnetBlock2D(
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
992
            self.resnet_down = ResnetBlock2D(
993
994
995
996
997
998
999
1000
1001
1002
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1003
                use_in_shortcut=True,
1004
1005
1006
                down=True,
                kernel="fir",
            )
1007
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1033
class AttnUpBlock2D(nn.Module):
1034
1035
1036
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1037
1038
        prev_output_channel: int,
        out_channels: int,
1039
1040
1041
1042
1043
1044
1045
1046
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
Patrick von Platen's avatar
Patrick von Platen committed
1047
        attention_type="default",
1048
1049
1050
1051
1052
1053
1054
1055
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
        self.attention_type = attention_type

1058
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1059
1060
1061
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1062
            resnets.append(
1063
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1064
1065
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1077
                AttentionBlock(
Patrick von Platen's avatar
Patrick von Platen committed
1078
                    out_channels,
1079
1080
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
1081
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1082
                    norm_num_groups=resnet_groups,
1083
1084
1085
1086
1087
1088
1089
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1090
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        else:
            self.upsamplers = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1111
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        attention_type="default",
        output_scale_factor=1.0,
        add_upsample=True,
1130
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1131
        use_linear_projection=False,
Patrick von Platen's avatar
Patrick von Platen committed
1132
1133
1134
1135
1136
1137
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.attention_type = attention_type
1138
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
1139
1140
1141
1142
1143
1144

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
1145
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
1158
1159
1160
1161
1162
1163
1164
1165
1166
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1167
                        use_linear_projection=use_linear_projection,
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

1189
1190
        self.gradient_checkpointing = False

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )
        if slice_size is not None and slice_size > self.attn_num_head_channels:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )

        for attn in self.attentions:
            attn._set_attention_slice(slice_size)

1206
1207
        self.gradient_checkpointing = False

1208
1209
1210
1211
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for attn in self.attentions:
            attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

1212
1213
1214
1215
1216
1217
    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
1218
        upsample_size=None,
1219
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1220
1221
1222
1223
1224
1225
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1226
1227
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1228
                def create_custom_forward(module, return_dict=None):
1229
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1230
1231
1232
1233
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1234
1235
1236
1237
1238

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
1239
1240
                    create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
                )[0]
1241
1242
            else:
                hidden_states = resnet(hidden_states, temb)
Will Berman's avatar
Will Berman committed
1243
                hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
Patrick von Platen's avatar
Patrick von Platen committed
1244
1245
1246

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1247
                hidden_states = upsampler(hidden_states, upsample_size)
Patrick von Platen's avatar
Patrick von Platen committed
1248
1249
1250
1251

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1252
class UpBlock2D(nn.Module):
1253
1254
1255
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1256
1257
        prev_output_channel: int,
        out_channels: int,
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1273
1274
1275
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1276
            resnets.append(
1277
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1278
1279
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1294
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1295
1296
1297
        else:
            self.upsamplers = None

1298
1299
        self.gradient_checkpointing = False

1300
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
1301
1302
1303
1304
1305
1306
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)
1318
1319
1320

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1321
                hidden_states = upsampler(hidden_states, upsample_size)
1322
1323

        return hidden_states
1324
1325


1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1348
                ResnetBlock2D(
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1404
                ResnetBlock2D(
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1418
                AttentionBlock(
1419
1420
1421
1422
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1423
                    norm_num_groups=resnet_groups,
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1447
class AttnSkipUpBlock2D(nn.Module):
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=np.sqrt(2.0),
        upsample_padding=1,
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        self.attention_type = attention_type

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1477
                ResnetBlock2D(
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions.append(
1493
            AttentionBlock(
1494
1495
1496
1497
1498
1499
1500
1501
1502
                out_channels,
                num_head_channels=attn_num_head_channels,
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1503
            self.resnet_up = ResnetBlock2D(
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1515
                use_in_shortcut=True,
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        hidden_states = self.attentions[0](hidden_states)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1558
class SkipUpBlock2D(nn.Module):
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1583
                ResnetBlock2D(
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1600
            self.resnet_up = ResnetBlock2D(
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1612
                use_in_shortcut=True,
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample