unet_2d_blocks.py 122 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional, Tuple
15

16
import numpy as np
17
import torch
18
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
19
20
from torch import nn

21
from ..utils import is_torch_version, logging
22
from .activations import get_activation
23
from .attention import AdaGroupNorm
24
from .attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
25
from .dual_transformer_2d import DualTransformer2DModel
26
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
27
from .transformer_2d import Transformer2DModel
Patrick von Platen's avatar
Patrick von Platen committed
28
29


30
31
32
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


33
34
35
36
37
38
39
40
41
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
42
    transformer_layers_per_block=1,
43
    num_attention_heads=None,
44
    resnet_groups=None,
45
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
46
    downsample_padding=None,
47
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
48
    use_linear_projection=False,
49
    only_cross_attention=False,
50
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
51
    resnet_time_scale_shift="default",
52
    attention_type="default",
53
54
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
55
    cross_attention_norm=None,
56
    attention_head_dim=None,
57
    downsample_type=None,
58
    dropout=0.0,
59
):
60
61
62
63
64
65
66
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
70
71
72
73
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
74
            dropout=dropout,
75
76
77
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
78
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
79
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
80
81
82
83
84
85
86
87
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "ResnetDownsampleBlock2D":
        return ResnetDownsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
88
            dropout=dropout,
Will Berman's avatar
Will Berman committed
89
90
91
92
93
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
94
95
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
96
        )
Patrick von Platen's avatar
Patrick von Platen committed
97
    elif down_block_type == "AttnDownBlock2D":
98
99
100
101
        if add_downsample is False:
            downsample_type = None
        else:
            downsample_type = downsample_type or "conv"  # default to 'conv'
Patrick von Platen's avatar
Patrick von Platen committed
102
        return AttnDownBlock2D(
103
104
105
106
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
107
            dropout=dropout,
108
109
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
110
            resnet_groups=resnet_groups,
111
            downsample_padding=downsample_padding,
112
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
113
            resnet_time_scale_shift=resnet_time_scale_shift,
114
            downsample_type=downsample_type,
115
        )
Patrick von Platen's avatar
Patrick von Platen committed
116
    elif down_block_type == "CrossAttnDownBlock2D":
117
        if cross_attention_dim is None:
118
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
119
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
120
            num_layers=num_layers,
121
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
122
123
124
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
125
            dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
129
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
130
            downsample_padding=downsample_padding,
131
            cross_attention_dim=cross_attention_dim,
132
            num_attention_heads=num_attention_heads,
133
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
134
            use_linear_projection=use_linear_projection,
135
            only_cross_attention=only_cross_attention,
136
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
137
            resnet_time_scale_shift=resnet_time_scale_shift,
138
            attention_type=attention_type,
Will Berman's avatar
Will Berman committed
139
140
141
142
143
144
145
146
147
        )
    elif down_block_type == "SimpleCrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
        return SimpleCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
148
            dropout=dropout,
Will Berman's avatar
Will Berman committed
149
150
151
152
153
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
154
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
155
            resnet_time_scale_shift=resnet_time_scale_shift,
156
157
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
158
            only_cross_attention=only_cross_attention,
159
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
160
        )
Patrick von Platen's avatar
Patrick von Platen committed
161
162
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
163
164
165
166
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
167
            dropout=dropout,
168
169
170
171
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
172
            resnet_time_scale_shift=resnet_time_scale_shift,
173
        )
Patrick von Platen's avatar
Patrick von Platen committed
174
175
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
176
177
178
179
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
180
            dropout=dropout,
181
182
183
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
184
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
185
            resnet_time_scale_shift=resnet_time_scale_shift,
186
        )
187
188
189
190
191
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
192
            dropout=dropout,
193
194
195
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
196
            resnet_groups=resnet_groups,
197
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
198
            resnet_time_scale_shift=resnet_time_scale_shift,
199
        )
Will Berman's avatar
Will Berman committed
200
201
202
203
204
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
205
            dropout=dropout,
Will Berman's avatar
Will Berman committed
206
207
208
209
210
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
211
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
212
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
213
        )
214
215
216
217
218
219
    elif down_block_type == "KDownBlock2D":
        return KDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
220
            dropout=dropout,
221
222
223
224
225
226
227
228
229
230
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif down_block_type == "KCrossAttnDownBlock2D":
        return KCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
231
            dropout=dropout,
232
233
234
235
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
236
            attention_head_dim=attention_head_dim,
237
238
            add_self_attention=True if not add_downsample else False,
        )
Will Berman's avatar
Will Berman committed
239
    raise ValueError(f"{down_block_type} does not exist.")
240
241
242
243
244
245


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
246
247
    out_channels,
    prev_output_channel,
248
249
250
251
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
252
    transformer_layers_per_block=1,
253
    num_attention_heads=None,
254
    resnet_groups=None,
255
    cross_attention_dim=None,
256
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
257
    use_linear_projection=False,
258
    only_cross_attention=False,
259
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
260
    resnet_time_scale_shift="default",
261
    attention_type="default",
262
263
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
264
    cross_attention_norm=None,
265
    attention_head_dim=None,
266
    upsample_type=None,
267
    dropout=0.0,
268
):
269
270
271
272
273
274
275
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
276
277
278
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
279
280
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
281
282
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
283
            temb_channels=temb_channels,
284
            dropout=dropout,
285
286
287
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
288
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
289
290
291
292
293
294
295
296
297
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "ResnetUpsampleBlock2D":
        return ResnetUpsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
298
            dropout=dropout,
Will Berman's avatar
Will Berman committed
299
300
301
302
303
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
304
305
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
306
        )
Patrick von Platen's avatar
Patrick von Platen committed
307
    elif up_block_type == "CrossAttnUpBlock2D":
308
309
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
310
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
311
            num_layers=num_layers,
312
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
313
314
315
316
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
317
            dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
318
319
320
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
321
            resnet_groups=resnet_groups,
322
            cross_attention_dim=cross_attention_dim,
323
            num_attention_heads=num_attention_heads,
324
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
325
            use_linear_projection=use_linear_projection,
326
            only_cross_attention=only_cross_attention,
327
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
328
            resnet_time_scale_shift=resnet_time_scale_shift,
329
            attention_type=attention_type,
Will Berman's avatar
Will Berman committed
330
331
332
333
334
335
336
337
338
339
        )
    elif up_block_type == "SimpleCrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
        return SimpleCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
340
            dropout=dropout,
Will Berman's avatar
Will Berman committed
341
342
343
344
345
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
346
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
347
            resnet_time_scale_shift=resnet_time_scale_shift,
348
349
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
350
            only_cross_attention=only_cross_attention,
351
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
352
        )
Patrick von Platen's avatar
Patrick von Platen committed
353
    elif up_block_type == "AttnUpBlock2D":
354
355
356
357
358
        if add_upsample is False:
            upsample_type = None
        else:
            upsample_type = upsample_type or "conv"  # default to 'conv'

Patrick von Platen's avatar
Patrick von Platen committed
359
        return AttnUpBlock2D(
360
361
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
362
363
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
364
            temb_channels=temb_channels,
365
            dropout=dropout,
366
367
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
368
            resnet_groups=resnet_groups,
369
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
370
            resnet_time_scale_shift=resnet_time_scale_shift,
371
            upsample_type=upsample_type,
372
        )
Patrick von Platen's avatar
Patrick von Platen committed
373
374
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
375
376
377
378
379
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
380
            dropout=dropout,
381
382
383
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
Will Berman's avatar
Will Berman committed
384
            resnet_time_scale_shift=resnet_time_scale_shift,
385
        )
Patrick von Platen's avatar
Patrick von Platen committed
386
387
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
388
389
390
391
392
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
393
            dropout=dropout,
394
395
396
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
397
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
398
            resnet_time_scale_shift=resnet_time_scale_shift,
399
        )
400
401
402
403
404
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
405
            dropout=dropout,
406
407
408
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
409
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
410
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
411
            temb_channels=temb_channels,
412
        )
Will Berman's avatar
Will Berman committed
413
414
415
416
417
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
418
            dropout=dropout,
Will Berman's avatar
Will Berman committed
419
420
421
422
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
423
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
424
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
425
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
426
        )
427
428
429
430
431
432
    elif up_block_type == "KUpBlock2D":
        return KUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
433
            dropout=dropout,
434
435
436
437
438
439
440
441
442
443
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif up_block_type == "KCrossAttnUpBlock2D":
        return KCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
444
            dropout=dropout,
445
446
447
448
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
449
            attention_head_dim=attention_head_dim,
450
451
        )

452
    raise ValueError(f"{up_block_type} does not exist.")
453
454


455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
class AutoencoderTinyBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, act_fn: str):
        super().__init__()
        act_fn = get_activation(act_fn)
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
        )
        self.skip = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
            if in_channels != out_channels
            else nn.Identity()
        )
        self.fuse = nn.ReLU()

    def forward(self, x):
        return self.fuse(self.conv(x) + self.skip(x))


Patrick von Platen's avatar
Patrick von Platen committed
477
478
479
480
481
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
482
        dropout: float = 0.0,
483
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
484
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
485
        resnet_time_scale_shift: str = "default",  # default, spatial
Patrick von Platen's avatar
Patrick von Platen committed
486
487
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
488
        resnet_pre_norm: bool = True,
Will Berman's avatar
Will Berman committed
489
        add_attention: bool = True,
490
        attention_head_dim=1,
Patrick von Platen's avatar
Patrick von Platen committed
491
492
493
        output_scale_factor=1.0,
    ):
        super().__init__()
494
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Will Berman's avatar
Will Berman committed
495
        self.add_attention = add_attention
Patrick von Platen's avatar
Patrick von Platen committed
496

497
498
        # there is always at least one resnet
        resnets = [
499
            ResnetBlock2D(
500
501
502
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
503
                eps=resnet_eps,
504
505
506
507
508
509
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
510
            )
511
512
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
513

514
515
516
517
518
519
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
            )
            attention_head_dim = in_channels

520
        for _ in range(num_layers):
Will Berman's avatar
Will Berman committed
521
522
            if self.add_attention:
                attentions.append(
523
                    Attention(
Will Berman's avatar
Will Berman committed
524
                        in_channels,
525
526
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
527
528
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
YiYi Xu's avatar
YiYi Xu committed
529
530
                        norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
531
532
533
534
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
Will Berman's avatar
Will Berman committed
535
                    )
536
                )
Will Berman's avatar
Will Berman committed
537
538
539
            else:
                attentions.append(None)

540
            resnets.append(
541
                ResnetBlock2D(
542
543
544
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
545
                    eps=resnet_eps,
546
547
548
549
550
551
552
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
553
554
            )

555
556
557
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Will Berman's avatar
Will Berman committed
558
    def forward(self, hidden_states, temb=None):
Patrick von Platen's avatar
Patrick von Platen committed
559
        hidden_states = self.resnets[0](hidden_states, temb)
560
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
561
            if attn is not None:
YiYi Xu's avatar
YiYi Xu committed
562
                hidden_states = attn(hidden_states, temb=temb)
Patrick von Platen's avatar
Patrick von Platen committed
563
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
564

565
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
566

567

Patrick von Platen's avatar
Patrick von Platen committed
568
569
570
571
572
573
574
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
575
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
576
577
578
579
580
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
581
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
582
583
        output_scale_factor=1.0,
        cross_attention_dim=1280,
584
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
585
        use_linear_projection=False,
586
        upcast_attention=False,
587
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
588
589
590
    ):
        super().__init__()

591
        self.has_cross_attention = True
592
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
593
594
595
596
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
597
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
613
614
615
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
616
617
                        num_attention_heads,
                        in_channels // num_attention_heads,
618
                        in_channels=in_channels,
619
                        num_layers=transformer_layers_per_block,
620
621
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
622
                        use_linear_projection=use_linear_projection,
623
                        upcast_attention=upcast_attention,
624
                        attention_type=attention_type,
625
626
627
628
629
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
630
631
                        num_attention_heads,
                        in_channels // num_attention_heads,
632
633
634
635
636
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
637
638
                )
            resnets.append(
639
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

656
657
        self.gradient_checkpointing = False

658
    def forward(
659
660
661
662
663
664
665
666
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
667
668
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
669
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
670
671
672
673
674
675
676
677
678
679
680
681
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
ethansmith2000's avatar
ethansmith2000 committed
682
                hidden_states = attn(
683
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
684
685
686
687
688
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
                )[0]
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
705
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

        return hidden_states


class UNetMidBlock2DSimpleCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
722
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
723
724
        output_scale_factor=1.0,
        cross_attention_dim=1280,
725
        skip_time_act=False,
726
        only_cross_attention=False,
727
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
728
729
730
731
732
    ):
        super().__init__()

        self.has_cross_attention = True

733
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
734
735
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

736
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
751
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
752
753
754
755
756
            )
        ]
        attentions = []

        for _ in range(num_layers):
757
758
759
760
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
761
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
762
                Attention(
Will Berman's avatar
Will Berman committed
763
764
765
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
766
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
767
768
769
770
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
771
                    only_cross_attention=only_cross_attention,
772
                    cross_attention_norm=cross_attention_norm,
773
                    processor=processor,
Will Berman's avatar
Will Berman committed
774
775
776
777
778
779
780
781
782
783
784
785
786
787
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
788
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
789
790
791
792
793
794
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

795
    def forward(
796
797
798
799
800
801
802
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
803
804
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
805
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
806
807
808
809
810
811
812
813
814
815
816
817

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

818
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
819
820
821
822
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
823
                encoder_hidden_states=encoder_hidden_states,
824
                attention_mask=mask,
825
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
826
827
828
            )

            # resnet
829
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
830
831
832
833

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
834
class AttnDownBlock2D(nn.Module):
835
836
837
838
839
840
841
842
843
844
845
846
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
847
        attention_head_dim=1,
848
        output_scale_factor=1.0,
849
        downsample_padding=1,
850
        downsample_type="conv",
851
852
853
854
    ):
        super().__init__()
        resnets = []
        attentions = []
855
        self.downsample_type = downsample_type
856

857
858
859
860
861
862
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

863
864
865
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
866
                ResnetBlock2D(
867
868
869
870
871
872
873
874
875
876
877
878
879
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
880
                Attention(
881
                    out_channels,
882
883
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
884
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
885
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
886
                    norm_num_groups=resnet_groups,
887
888
889
890
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
891
892
893
894
895
896
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

897
        if downsample_type == "conv":
898
            self.downsamplers = nn.ModuleList(
899
900
                [
                    Downsample2D(
901
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
902
903
                    )
                ]
904
            )
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
        elif downsample_type == "resnet":
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        down=True,
                    )
                ]
            )
923
924
925
        else:
            self.downsamplers = None

926
927
928
929
930
    def forward(self, hidden_states, temb=None, upsample_size=None, cross_attention_kwargs=None):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        lora_scale = cross_attention_kwargs.get("scale", 1.0)

931
932
933
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
934
935
936
            cross_attention_kwargs.update({"scale": lora_scale})
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
937
            output_states = output_states + (hidden_states,)
938
939
940

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
941
                if self.downsample_type == "resnet":
942
                    hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale)
943
                else:
944
                    hidden_states = downsampler(hidden_states, scale=lora_scale)
945
946
947
948
949
950

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
951
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
952
953
954
955
956
957
958
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
959
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
960
961
962
963
964
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
965
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
966
967
968
969
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
970
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
971
        use_linear_projection=False,
972
        only_cross_attention=False,
973
        upcast_attention=False,
974
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
975
976
977
978
979
    ):
        super().__init__()
        resnets = []
        attentions = []

980
        self.has_cross_attention = True
981
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
982
983
984
985

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
986
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
987
988
989
990
991
992
993
994
995
996
997
998
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
999
1000
1001
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1002
1003
                        num_attention_heads,
                        out_channels // num_attention_heads,
1004
                        in_channels=out_channels,
1005
                        num_layers=transformer_layers_per_block,
1006
1007
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1008
                        use_linear_projection=use_linear_projection,
1009
                        only_cross_attention=only_cross_attention,
1010
                        upcast_attention=upcast_attention,
1011
                        attention_type=attention_type,
1012
1013
1014
1015
1016
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1017
1018
                        num_attention_heads,
                        out_channels // num_attention_heads,
1019
1020
1021
1022
1023
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1024
1025
1026
1027
1028
1029
1030
1031
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1032
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1033
1034
1035
1036
1037
1038
                    )
                ]
            )
        else:
            self.downsamplers = None

1039
1040
        self.gradient_checkpointing = False

1041
    def forward(
1042
1043
1044
1045
1046
1047
1048
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
1049
        additional_residuals=None,
1050
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1051
1052
        output_states = ()

1053
1054
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

Will Berman's avatar
Will Berman committed
1055
1056
1057
        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
1058
1059
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1060
                def create_custom_forward(module, return_dict=None):
1061
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1062
1063
1064
1065
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1066
1067
1068

                    return custom_forward

1069
1070
1071
1072
1073
1074
1075
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1076
                hidden_states = attn(
1077
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1078
1079
1080
1081
1082
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1083
                )[0]
1084
            else:
1085
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1086
1087
1088
1089
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1090
1091
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1092
1093
                    return_dict=False,
                )[0]
1094

Will Berman's avatar
Will Berman committed
1095
1096
1097
1098
            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

1099
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1100
1101
1102

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1103
                hidden_states = downsampler(hidden_states, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1104

1105
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1106
1107
1108
1109

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1110
class DownBlock2D(nn.Module):
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
1125
        downsample_padding=1,
1126
1127
1128
1129
1130
1131
1132
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1133
                ResnetBlock2D(
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
1151
1152
                [
                    Downsample2D(
1153
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1154
1155
                    )
                ]
1156
1157
1158
1159
            )
        else:
            self.downsamplers = None

1160
1161
        self.gradient_checkpointing = False

1162
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
1163
1164
1165
        output_states = ()

        for resnet in self.resnets:
1166
1167
1168
1169
1170
1171
1172
1173
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1174
1175
1176
1177
1178
1179
1180
1181
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1182
            else:
1183
                hidden_states = resnet(hidden_states, temb, scale=scale)
1184

1185
            output_states = output_states + (hidden_states,)
1186
1187
1188

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1189
                hidden_states = downsampler(hidden_states, scale=scale)
1190

1191
            output_states = output_states + (hidden_states,)
1192
1193
1194
1195

        return hidden_states, output_states


1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1218
                ResnetBlock2D(
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1238
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1239
1240
1241
1242
1243
1244
                    )
                ]
            )
        else:
            self.downsamplers = None

1245
    def forward(self, hidden_states, scale: float = 1.0):
1246
        for resnet in self.resnets:
1247
            hidden_states = resnet(hidden_states, temb=None, scale=scale)
1248
1249
1250

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1251
                hidden_states = downsampler(hidden_states, scale)
1252
1253
1254
1255

        return hidden_states


1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1268
        attention_head_dim=1,
1269
1270
1271
1272
1273
1274
1275
1276
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

1277
1278
1279
1280
1281
1282
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1283
1284
1285
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1286
                ResnetBlock2D(
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1300
                Attention(
1301
                    out_channels,
1302
1303
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1304
1305
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1306
                    norm_num_groups=resnet_groups,
1307
1308
1309
1310
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1321
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1322
1323
1324
1325
1326
1327
                    )
                ]
            )
        else:
            self.downsamplers = None

1328
    def forward(self, hidden_states, scale: float = 1.0):
1329
        for resnet, attn in zip(self.resnets, self.attentions):
1330
1331
1332
            hidden_states = resnet(hidden_states, temb=None, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1333
1334
1335

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1336
                hidden_states = downsampler(hidden_states, scale)
1337
1338
1339
1340

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1341
class AttnSkipDownBlock2D(nn.Module):
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
1353
        attention_head_dim=1,
1354
1355
1356
1357
1358
1359
1360
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

1361
1362
1363
1364
1365
1366
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1367
1368
1369
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1370
                ResnetBlock2D(
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
1385
                Attention(
1386
                    out_channels,
1387
1388
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1389
1390
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
1391
1392
1393
1394
1395
                    norm_num_groups=32,
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1396
1397
1398
1399
                )
            )

        if add_downsample:
1400
            self.resnet_down = ResnetBlock2D(
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1411
                use_in_shortcut=True,
1412
1413
1414
                down=True,
                kernel="fir",
            )
1415
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1416
1417
1418
1419
1420
1421
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

1422
    def forward(self, hidden_states, temb=None, skip_sample=None, scale: float = 1.0):
1423
1424
1425
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
1426
1427
1428
            hidden_states = resnet(hidden_states, temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1429
1430
1431
            output_states += (hidden_states,)

        if self.downsamplers is not None:
1432
            hidden_states = self.resnet_down(hidden_states, temb, scale=scale)
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1443
class SkipDownBlock2D(nn.Module):
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1465
                ResnetBlock2D(
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
1481
            self.resnet_down = ResnetBlock2D(
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1492
                use_in_shortcut=True,
1493
1494
1495
                down=True,
                kernel="fir",
            )
1496
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1497
1498
1499
1500
1501
1502
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

1503
    def forward(self, hidden_states, temb=None, skip_sample=None, scale: float = 1.0):
1504
1505
1506
        output_states = ()

        for resnet in self.resnets:
1507
            hidden_states = resnet(hidden_states, temb, scale)
1508
1509
1510
            output_states += (hidden_states,)

        if self.downsamplers is not None:
1511
            hidden_states = self.resnet_down(hidden_states, temb, scale)
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Will Berman's avatar
Will Berman committed
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
class ResnetDownsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
1537
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1556
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1576
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1577
1578
1579
1580
1581
1582
1583
1584
1585
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1586
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
Will Berman's avatar
Will Berman committed
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1598
1599
1600
1601
1602
1603
1604
1605
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
1606
            else:
1607
                hidden_states = resnet(hidden_states, temb, scale)
Will Berman's avatar
Will Berman committed
1608

1609
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1610
1611
1612

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1613
                hidden_states = downsampler(hidden_states, temb, scale)
Will Berman's avatar
Will Berman committed
1614

1615
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632

        return hidden_states, output_states


class SimpleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1633
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
1634
1635
1636
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_downsample=True,
1637
        skip_time_act=False,
1638
        only_cross_attention=False,
1639
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
1640
1641
1642
1643
1644
1645
1646
1647
    ):
        super().__init__()

        self.has_cross_attention = True

        resnets = []
        attentions = []

1648
1649
        self.attention_head_dim = attention_head_dim
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1665
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1666
1667
                )
            )
1668
1669
1670
1671
1672

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1673
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1674
                Attention(
Will Berman's avatar
Will Berman committed
1675
1676
1677
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
1678
                    dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
1679
1680
1681
1682
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1683
                    only_cross_attention=only_cross_attention,
1684
                    cross_attention_norm=cross_attention_norm,
1685
                    processor=processor,
Will Berman's avatar
Will Berman committed
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1705
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1706
1707
1708
1709
1710
1711
1712
1713
1714
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1715
    def forward(
1716
1717
1718
1719
1720
1721
1722
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1723
    ):
Will Berman's avatar
Will Berman committed
1724
        output_states = ()
1725
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
1726

1727
1728
        lora_scale = cross_attention_kwargs.get("scale", 1.0)

1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
1740
        for resnet, attn in zip(self.resnets, self.attentions):
1741
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
1742

1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
ethansmith2000's avatar
ethansmith2000 committed
1753
                hidden_states = attn(
1754
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1755
1756
1757
1758
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=mask,
                    **cross_attention_kwargs,
                )
1759
            else:
1760
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1761
1762
1763
1764

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
1765
                    attention_mask=mask,
1766
1767
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
1768

1769
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1770
1771
1772

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1773
                hidden_states = downsampler(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
1774

1775
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1776
1777
1778
1779

        return hidden_states, output_states


1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
class KDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
        add_downsample=False,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            # YiYi's comments- might be able to use FirDownsample2D, look into details later
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1826
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1838
1839
1840
1841
1842
1843
1844
1845
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1846
            else:
1847
                hidden_states = resnet(hidden_states, temb, scale)
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


class KCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        cross_attention_dim: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_group_size: int = 32,
        add_downsample=True,
1869
        attention_head_dim: int = 64,
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
        add_self_attention: bool = False,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    out_channels,
1902
1903
                    out_channels // attention_head_dim,
                    attention_head_dim,
1904
1905
1906
1907
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
1908
                    cross_attention_norm="layer_norm",
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
                    group_size=resnet_group_size,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
1924
1925
1926
1927
1928
1929
1930
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1931
1932
    ):
        output_states = ()
1933
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1947
1948
1949
1950
1951
1952
1953
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1954
                hidden_states = attn(
1955
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1956
1957
1958
1959
1960
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
1961
                )
1962
            else:
1963
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1964
1965
1966
1967
1968
1969
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
1970
                    encoder_attention_mask=encoder_attention_mask,
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
                )

            if self.downsamplers is None:
                output_states += (None,)
            else:
                output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1985
class AttnUpBlock2D(nn.Module):
1986
1987
1988
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1989
1990
        prev_output_channel: int,
        out_channels: int,
1991
1992
1993
1994
1995
1996
1997
1998
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1999
        attention_head_dim=1,
2000
        output_scale_factor=1.0,
2001
        upsample_type="conv",
2002
2003
2004
2005
2006
    ):
        super().__init__()
        resnets = []
        attentions = []

2007
2008
        self.upsample_type = upsample_type

2009
2010
2011
2012
2013
2014
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2015
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2016
2017
2018
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2019
            resnets.append(
2020
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2021
2022
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2034
                Attention(
Patrick von Platen's avatar
Patrick von Platen committed
2035
                    out_channels,
2036
2037
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2038
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
2039
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
2040
                    norm_num_groups=resnet_groups,
2041
2042
2043
2044
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2045
2046
2047
2048
2049
2050
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

2051
        if upsample_type == "conv":
Patrick von Platen's avatar
Patrick von Platen committed
2052
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
        elif upsample_type == "resnet":
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        up=True,
                    )
                ]
            )
2071
2072
2073
        else:
            self.upsamplers = None

2074
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
2075
2076
2077
2078
2079
2080
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2081
2082
2083
            hidden_states = resnet(hidden_states, temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
2084
2085
2086

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2087
                if self.upsample_type == "resnet":
2088
                    hidden_states = upsampler(hidden_states, temb=temb, scale=scale)
2089
                else:
2090
                    hidden_states = upsampler(hidden_states, scale=scale)
2091
2092
2093
2094

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2095
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
2096
2097
2098
2099
2100
2101
2102
2103
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
2104
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
2105
2106
2107
2108
2109
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2110
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
2111
2112
2113
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2114
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
2115
        use_linear_projection=False,
2116
        only_cross_attention=False,
2117
        upcast_attention=False,
2118
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
2119
2120
2121
2122
2123
    ):
        super().__init__()
        resnets = []
        attentions = []

2124
        self.has_cross_attention = True
2125
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
2126
2127
2128
2129
2130
2131

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
2132
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
2145
2146
2147
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
2148
2149
                        num_attention_heads,
                        out_channels // num_attention_heads,
2150
                        in_channels=out_channels,
2151
                        num_layers=transformer_layers_per_block,
2152
2153
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
2154
                        use_linear_projection=use_linear_projection,
2155
                        only_cross_attention=only_cross_attention,
2156
                        upcast_attention=upcast_attention,
2157
                        attention_type=attention_type,
2158
2159
2160
2161
2162
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
2163
2164
                        num_attention_heads,
                        out_channels // num_attention_heads,
2165
2166
2167
2168
2169
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
2170
2171
2172
2173
2174
2175
2176
2177
2178
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2179
2180
2181
2182
        self.gradient_checkpointing = False

    def forward(
        self,
2183
2184
2185
2186
2187
2188
2189
2190
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2191
    ):
2192
2193
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

Patrick von Platen's avatar
Patrick von Platen committed
2194
2195
2196
2197
2198
2199
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2200
2201
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
2202
                def create_custom_forward(module, return_dict=None):
2203
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
2204
2205
2206
2207
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
2208
2209
2210

                    return custom_forward

2211
2212
2213
2214
2215
2216
2217
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
2218
                hidden_states = attn(
2219
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
2220
2221
2222
2223
2224
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
2225
                )[0]
2226
            else:
2227
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
2228
2229
2230
2231
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
2232
2233
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
2234
2235
                    return_dict=False,
                )[0]
Patrick von Platen's avatar
Patrick von Platen committed
2236
2237
2238

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2239
                hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2240
2241
2242
2243

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2244
class UpBlock2D(nn.Module):
2245
2246
2247
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2248
2249
        prev_output_channel: int,
        out_channels: int,
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2265
2266
2267
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2268
            resnets.append(
2269
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2270
2271
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
2286
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2287
2288
2289
        else:
            self.upsamplers = None

2290
2291
        self.gradient_checkpointing = False

2292
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
2293
2294
2295
2296
2297
2298
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2299
2300
2301
2302
2303
2304
2305
2306
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2307
2308
2309
2310
2311
2312
2313
2314
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2315
            else:
2316
                hidden_states = resnet(hidden_states, temb, scale=scale)
2317
2318
2319

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2320
                hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
2321
2322

        return hidden_states
2323
2324


2325
2326
2327
2328
2329
2330
2331
2332
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
2333
        resnet_time_scale_shift: str = "default",  # default, spatial
2334
2335
2336
2337
2338
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2339
        temb_channels=None,
2340
2341
2342
2343
2344
2345
2346
2347
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2348
                ResnetBlock2D(
2349
2350
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2351
                    temb_channels=temb_channels,
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2369
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
2370
        for resnet in self.resnets:
2371
            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
2372
2373
2374
2375
2376
2377
2378
2379

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2392
        attention_head_dim=1,
2393
2394
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2395
        temb_channels=None,
2396
2397
2398
2399
2400
    ):
        super().__init__()
        resnets = []
        attentions = []

2401
2402
2403
2404
2405
2406
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2407
2408
2409
2410
        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2411
                ResnetBlock2D(
2412
2413
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2414
                    temb_channels=temb_channels,
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2425
                Attention(
2426
                    out_channels,
2427
2428
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2429
2430
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
2431
                    norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
YiYi Xu's avatar
YiYi Xu committed
2432
                    spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
2433
2434
2435
2436
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2448
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
2449
        for resnet, attn in zip(self.resnets, self.attentions):
2450
2451
2452
            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs)
2453
2454
2455

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2456
                hidden_states = upsampler(hidden_states, scale=scale)
2457
2458
2459
2460

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2461
class AttnSkipUpBlock2D(nn.Module):
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
2474
        attention_head_dim=1,
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2487
                ResnetBlock2D(
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

2502
2503
2504
2505
2506
2507
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2508
        self.attentions.append(
2509
            Attention(
2510
                out_channels,
2511
2512
                heads=out_channels // attention_head_dim,
                dim_head=attention_head_dim,
2513
2514
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
2515
2516
2517
2518
2519
                norm_num_groups=32,
                residual_connection=True,
                bias=True,
                upcast_softmax=True,
                _from_deprecated_attn_block=True,
2520
2521
2522
2523
2524
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2525
            self.resnet_up = ResnetBlock2D(
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2537
                use_in_shortcut=True,
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

2552
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None, scale: float = 1.0):
2553
2554
2555
2556
2557
2558
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2559
            hidden_states = resnet(hidden_states, temb, scale=scale)
2560

2561
2562
        cross_attention_kwargs = {"scale": scale}
        hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs)
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

2576
            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
2577
2578
2579
2580

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
2581
class SkipUpBlock2D(nn.Module):
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2606
                ResnetBlock2D(
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2623
            self.resnet_up = ResnetBlock2D(
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2635
                use_in_shortcut=True,
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

2650
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None, scale: float = 1.0):
2651
2652
2653
2654
2655
2656
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2657
            hidden_states = resnet(hidden_states, temb, scale=scale)
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

2671
            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
2672
2673

        return hidden_states, skip_sample
Will Berman's avatar
Will Berman committed
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691


class ResnetUpsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
2692
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2713
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2733
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2734
2735
2736
2737
2738
2739
2740
2741
2742
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

2743
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
Will Berman's avatar
Will Berman committed
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2758
2759
2760
2761
2762
2763
2764
2765
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
2766
            else:
2767
                hidden_states = resnet(hidden_states, temb, scale=scale)
Will Berman's avatar
Will Berman committed
2768
2769
2770

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2771
                hidden_states = upsampler(hidden_states, temb, scale=scale)
Will Berman's avatar
Will Berman committed
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789

        return hidden_states


class SimpleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2790
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
2791
2792
2793
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2794
        skip_time_act=False,
2795
        only_cross_attention=False,
2796
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
2797
2798
2799
2800
2801
2802
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
2803
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
2804

2805
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2823
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2824
2825
                )
            )
2826
2827
2828
2829
2830

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
2831
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
2832
                Attention(
Will Berman's avatar
Will Berman committed
2833
2834
2835
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
2836
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
2837
2838
2839
2840
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
2841
                    only_cross_attention=only_cross_attention,
2842
                    cross_attention_norm=cross_attention_norm,
2843
                    processor=processor,
Will Berman's avatar
Will Berman committed
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2863
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
2875
2876
2877
2878
2879
2880
2881
2882
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
2883
    ):
2884
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
2885

2886
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
2898
2899
2900
2901
2902
2903
2904
        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2905
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
2906

2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
ethansmith2000's avatar
ethansmith2000 committed
2917
                hidden_states = attn(
2918
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
2919
2920
2921
2922
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=mask,
                    **cross_attention_kwargs,
                )
2923
            else:
2924
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
2925
2926
2927
2928

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
2929
                    attention_mask=mask,
2930
2931
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
2932
2933
2934

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2935
                hidden_states = upsampler(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
2936
2937

        return hidden_states
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987


class KUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 5,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: Optional[int] = 32,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        k_in_channels = 2 * out_channels
        k_out_channels = in_channels
        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

2988
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

3002
3003
3004
3005
3006
3007
3008
3009
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
3010
            else:
3011
                hidden_states = resnet(hidden_states, temb, scale=scale)
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class KCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
3031
        attention_head_dim=1,  # attention dim_head
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
        cross_attention_dim: int = 768,
        add_upsample: bool = True,
        upcast_attention: bool = False,
    ):
        super().__init__()
        resnets = []
        attentions = []

        is_first_block = in_channels == out_channels == temb_channels
        is_middle_block = in_channels != out_channels
        add_self_attention = True if is_first_block else False

        self.has_cross_attention = True
3045
        self.attention_head_dim = attention_head_dim
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080

        # in_channels, and out_channels for the block (k-unet)
        k_in_channels = out_channels if is_first_block else 2 * out_channels
        k_out_channels = in_channels

        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            if is_middle_block and (i == num_layers - 1):
                conv_2d_out_channels = k_out_channels
            else:
                conv_2d_out_channels = None

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    conv_2d_out_channels=conv_2d_out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    k_out_channels if (i == num_layers - 1) else out_channels,
3081
                    k_out_channels // attention_head_dim
3082
                    if (i == num_layers - 1)
3083
3084
                    else out_channels // attention_head_dim,
                    attention_head_dim,
3085
3086
3087
3088
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
3089
                    cross_attention_norm="layer_norm",
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
                    upcast_attention=upcast_attention,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
3106
3107
3108
3109
3110
3111
3112
3113
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3114
3115
3116
3117
3118
    ):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

3119
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

3132
3133
3134
3135
3136
3137
3138
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
3139
                hidden_states = attn(
3140
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
3141
3142
3143
3144
3145
3146
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                )
3147
            else:
3148
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
3149
3150
3151
3152
3153
3154
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
3155
                    encoder_attention_mask=encoder_attention_mask,
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


# can potentially later be renamed to `No-feed-forward` attention
class KAttentionBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        upcast_attention: bool = False,
        temb_channels: int = 768,  # for ada_group_norm
        add_self_attention: bool = False,
3194
        cross_attention_norm: Optional[str] = None,
3195
3196
3197
3198
3199
3200
3201
3202
        group_size: int = 32,
    ):
        super().__init__()
        self.add_self_attention = add_self_attention

        # 1. Self-Attn
        if add_self_attention:
            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3203
            self.attn1 = Attention(
3204
3205
3206
3207
3208
3209
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                cross_attention_dim=None,
3210
                cross_attention_norm=None,
3211
3212
3213
3214
            )

        # 2. Cross-Attn
        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3215
        self.attn2 = Attention(
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            cross_attention_norm=cross_attention_norm,
        )

    def _to_3d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)

    def _to_4d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)

    def forward(
        self,
3234
3235
3236
3237
3238
3239
3240
3241
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        # TODO: mark emb as non-optional (self.norm2 requires it).
        #       requires assessing impact of change to positional param interface.
        emb: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        # 1. Self-Attention
        if self.add_self_attention:
            norm_hidden_states = self.norm1(hidden_states, emb)

            height, weight = norm_hidden_states.shape[2:]
            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=None,
3255
                attention_mask=attention_mask,
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
                **cross_attention_kwargs,
            )
            attn_output = self._to_4d(attn_output, height, weight)

            hidden_states = attn_output + hidden_states

        # 2. Cross-Attention/None
        norm_hidden_states = self.norm2(hidden_states, emb)

        height, weight = norm_hidden_states.shape[2:]
        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
3270
            attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
3271
3272
3273
3274
3275
3276
3277
            **cross_attention_kwargs,
        )
        attn_output = self._to_4d(attn_output, height, weight)

        hidden_states = attn_output + hidden_states

        return hidden_states