unet_2d_blocks.py 125 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional, Tuple
15

16
import numpy as np
17
import torch
18
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
19
20
from torch import nn

21
from ..utils import is_torch_version, logging
22
from ..utils.torch_utils import apply_freeu
23
from .activations import get_activation
24
from .attention import AdaGroupNorm
25
from .attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
26
from .dual_transformer_2d import DualTransformer2DModel
27
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
28
from .transformer_2d import Transformer2DModel
Patrick von Platen's avatar
Patrick von Platen committed
29
30


31
32
33
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


34
35
36
37
38
39
40
41
42
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
43
    transformer_layers_per_block=1,
44
    num_attention_heads=None,
45
    resnet_groups=None,
46
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
47
    downsample_padding=None,
48
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
49
    use_linear_projection=False,
50
    only_cross_attention=False,
51
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
52
    resnet_time_scale_shift="default",
53
    attention_type="default",
54
55
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
56
    cross_attention_norm=None,
57
    attention_head_dim=None,
58
    downsample_type=None,
59
    dropout=0.0,
60
):
61
62
63
64
65
66
67
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
68
69
70
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
71
72
73
74
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
75
            dropout=dropout,
76
77
78
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
79
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
80
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
81
82
83
84
85
86
87
88
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "ResnetDownsampleBlock2D":
        return ResnetDownsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
89
            dropout=dropout,
Will Berman's avatar
Will Berman committed
90
91
92
93
94
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
95
96
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
97
        )
Patrick von Platen's avatar
Patrick von Platen committed
98
    elif down_block_type == "AttnDownBlock2D":
99
100
101
102
        if add_downsample is False:
            downsample_type = None
        else:
            downsample_type = downsample_type or "conv"  # default to 'conv'
Patrick von Platen's avatar
Patrick von Platen committed
103
        return AttnDownBlock2D(
104
105
106
107
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
108
            dropout=dropout,
109
110
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
111
            resnet_groups=resnet_groups,
112
            downsample_padding=downsample_padding,
113
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
114
            resnet_time_scale_shift=resnet_time_scale_shift,
115
            downsample_type=downsample_type,
116
        )
Patrick von Platen's avatar
Patrick von Platen committed
117
    elif down_block_type == "CrossAttnDownBlock2D":
118
        if cross_attention_dim is None:
119
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
120
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
121
            num_layers=num_layers,
122
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
126
            dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
130
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
131
            downsample_padding=downsample_padding,
132
            cross_attention_dim=cross_attention_dim,
133
            num_attention_heads=num_attention_heads,
134
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
135
            use_linear_projection=use_linear_projection,
136
            only_cross_attention=only_cross_attention,
137
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
138
            resnet_time_scale_shift=resnet_time_scale_shift,
139
            attention_type=attention_type,
Will Berman's avatar
Will Berman committed
140
141
142
143
144
145
146
147
148
        )
    elif down_block_type == "SimpleCrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
        return SimpleCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
149
            dropout=dropout,
Will Berman's avatar
Will Berman committed
150
151
152
153
154
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
155
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
156
            resnet_time_scale_shift=resnet_time_scale_shift,
157
158
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
159
            only_cross_attention=only_cross_attention,
160
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
161
        )
Patrick von Platen's avatar
Patrick von Platen committed
162
163
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
164
165
166
167
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
168
            dropout=dropout,
169
170
171
172
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
173
            resnet_time_scale_shift=resnet_time_scale_shift,
174
        )
Patrick von Platen's avatar
Patrick von Platen committed
175
176
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
177
178
179
180
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
181
            dropout=dropout,
182
183
184
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
185
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
186
            resnet_time_scale_shift=resnet_time_scale_shift,
187
        )
188
189
190
191
192
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
193
            dropout=dropout,
194
195
196
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
197
            resnet_groups=resnet_groups,
198
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
199
            resnet_time_scale_shift=resnet_time_scale_shift,
200
        )
Will Berman's avatar
Will Berman committed
201
202
203
204
205
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
206
            dropout=dropout,
Will Berman's avatar
Will Berman committed
207
208
209
210
211
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
212
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
213
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
214
        )
215
216
217
218
219
220
    elif down_block_type == "KDownBlock2D":
        return KDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
221
            dropout=dropout,
222
223
224
225
226
227
228
229
230
231
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif down_block_type == "KCrossAttnDownBlock2D":
        return KCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
232
            dropout=dropout,
233
234
235
236
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
237
            attention_head_dim=attention_head_dim,
238
239
            add_self_attention=True if not add_downsample else False,
        )
Will Berman's avatar
Will Berman committed
240
    raise ValueError(f"{down_block_type} does not exist.")
241
242
243
244
245
246


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
247
248
    out_channels,
    prev_output_channel,
249
250
251
252
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
253
    resolution_idx=None,
254
    transformer_layers_per_block=1,
255
    num_attention_heads=None,
256
    resnet_groups=None,
257
    cross_attention_dim=None,
258
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
259
    use_linear_projection=False,
260
    only_cross_attention=False,
261
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
262
    resnet_time_scale_shift="default",
263
    attention_type="default",
264
265
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
266
    cross_attention_norm=None,
267
    attention_head_dim=None,
268
    upsample_type=None,
269
    dropout=0.0,
270
):
271
272
273
274
275
276
277
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warn(
            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

Patrick von Platen's avatar
Patrick von Platen committed
278
279
280
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
281
282
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
283
284
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
285
            temb_channels=temb_channels,
286
            resolution_idx=resolution_idx,
287
            dropout=dropout,
288
289
290
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
291
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
292
293
294
295
296
297
298
299
300
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "ResnetUpsampleBlock2D":
        return ResnetUpsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
301
            resolution_idx=resolution_idx,
302
            dropout=dropout,
Will Berman's avatar
Will Berman committed
303
304
305
306
307
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
308
309
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
310
        )
Patrick von Platen's avatar
Patrick von Platen committed
311
    elif up_block_type == "CrossAttnUpBlock2D":
312
313
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
314
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
315
            num_layers=num_layers,
316
            transformer_layers_per_block=transformer_layers_per_block,
Patrick von Platen's avatar
Patrick von Platen committed
317
318
319
320
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
321
            resolution_idx=resolution_idx,
322
            dropout=dropout,
Patrick von Platen's avatar
Patrick von Platen committed
323
324
325
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
326
            resnet_groups=resnet_groups,
327
            cross_attention_dim=cross_attention_dim,
328
            num_attention_heads=num_attention_heads,
329
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
330
            use_linear_projection=use_linear_projection,
331
            only_cross_attention=only_cross_attention,
332
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
333
            resnet_time_scale_shift=resnet_time_scale_shift,
334
            attention_type=attention_type,
Will Berman's avatar
Will Berman committed
335
336
337
338
339
340
341
342
343
344
        )
    elif up_block_type == "SimpleCrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
        return SimpleCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
345
            resolution_idx=resolution_idx,
346
            dropout=dropout,
Will Berman's avatar
Will Berman committed
347
348
349
350
351
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
352
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
353
            resnet_time_scale_shift=resnet_time_scale_shift,
354
355
            skip_time_act=resnet_skip_time_act,
            output_scale_factor=resnet_out_scale_factor,
356
            only_cross_attention=only_cross_attention,
357
            cross_attention_norm=cross_attention_norm,
Patrick von Platen's avatar
Patrick von Platen committed
358
        )
Patrick von Platen's avatar
Patrick von Platen committed
359
    elif up_block_type == "AttnUpBlock2D":
360
361
362
363
364
        if add_upsample is False:
            upsample_type = None
        else:
            upsample_type = upsample_type or "conv"  # default to 'conv'

Patrick von Platen's avatar
Patrick von Platen committed
365
        return AttnUpBlock2D(
366
367
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
368
369
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
370
            temb_channels=temb_channels,
371
            resolution_idx=resolution_idx,
372
            dropout=dropout,
373
374
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
375
            resnet_groups=resnet_groups,
376
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
377
            resnet_time_scale_shift=resnet_time_scale_shift,
378
            upsample_type=upsample_type,
379
        )
Patrick von Platen's avatar
Patrick von Platen committed
380
381
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
382
383
384
385
386
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
387
            resolution_idx=resolution_idx,
388
            dropout=dropout,
389
390
391
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
Will Berman's avatar
Will Berman committed
392
            resnet_time_scale_shift=resnet_time_scale_shift,
393
        )
Patrick von Platen's avatar
Patrick von Platen committed
394
395
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
396
397
398
399
400
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
401
            resolution_idx=resolution_idx,
402
            dropout=dropout,
403
404
405
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
406
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
407
            resnet_time_scale_shift=resnet_time_scale_shift,
408
        )
409
410
411
412
413
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
414
            resolution_idx=resolution_idx,
415
            dropout=dropout,
416
417
418
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
419
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
420
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
421
            temb_channels=temb_channels,
422
        )
Will Berman's avatar
Will Berman committed
423
424
425
426
427
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
428
            resolution_idx=resolution_idx,
429
            dropout=dropout,
Will Berman's avatar
Will Berman committed
430
431
432
433
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
434
            attention_head_dim=attention_head_dim,
Will Berman's avatar
Will Berman committed
435
            resnet_time_scale_shift=resnet_time_scale_shift,
YiYi Xu's avatar
YiYi Xu committed
436
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
437
        )
438
439
440
441
442
443
    elif up_block_type == "KUpBlock2D":
        return KUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
444
            resolution_idx=resolution_idx,
445
            dropout=dropout,
446
447
448
449
450
451
452
453
454
455
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
    elif up_block_type == "KCrossAttnUpBlock2D":
        return KCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
456
            resolution_idx=resolution_idx,
457
            dropout=dropout,
458
459
460
461
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            cross_attention_dim=cross_attention_dim,
462
            attention_head_dim=attention_head_dim,
463
464
        )

465
    raise ValueError(f"{up_block_type} does not exist.")
466
467


468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
class AutoencoderTinyBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, act_fn: str):
        super().__init__()
        act_fn = get_activation(act_fn)
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
        )
        self.skip = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
            if in_channels != out_channels
            else nn.Identity()
        )
        self.fuse = nn.ReLU()

    def forward(self, x):
        return self.fuse(self.conv(x) + self.skip(x))


Patrick von Platen's avatar
Patrick von Platen committed
490
491
492
493
494
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
495
        dropout: float = 0.0,
496
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
497
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
498
        resnet_time_scale_shift: str = "default",  # default, spatial
Patrick von Platen's avatar
Patrick von Platen committed
499
500
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
501
        attn_groups: Optional[int] = None,
502
        resnet_pre_norm: bool = True,
Will Berman's avatar
Will Berman committed
503
        add_attention: bool = True,
504
        attention_head_dim=1,
Patrick von Platen's avatar
Patrick von Platen committed
505
506
507
        output_scale_factor=1.0,
    ):
        super().__init__()
508
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Will Berman's avatar
Will Berman committed
509
        self.add_attention = add_attention
Patrick von Platen's avatar
Patrick von Platen committed
510

511
512
513
        if attn_groups is None:
            attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None

514
515
        # there is always at least one resnet
        resnets = [
516
            ResnetBlock2D(
517
518
519
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
520
                eps=resnet_eps,
521
522
523
524
525
526
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
527
            )
528
529
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
530

531
532
533
534
535
536
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
            )
            attention_head_dim = in_channels

537
        for _ in range(num_layers):
Will Berman's avatar
Will Berman committed
538
539
            if self.add_attention:
                attentions.append(
540
                    Attention(
Will Berman's avatar
Will Berman committed
541
                        in_channels,
542
543
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
544
545
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
546
                        norm_num_groups=attn_groups,
YiYi Xu's avatar
YiYi Xu committed
547
                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
548
549
550
551
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
Will Berman's avatar
Will Berman committed
552
                    )
553
                )
Will Berman's avatar
Will Berman committed
554
555
556
            else:
                attentions.append(None)

557
            resnets.append(
558
                ResnetBlock2D(
559
560
561
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
562
                    eps=resnet_eps,
563
564
565
566
567
568
569
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
570
571
            )

572
573
574
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Will Berman's avatar
Will Berman committed
575
    def forward(self, hidden_states, temb=None):
Patrick von Platen's avatar
Patrick von Platen committed
576
        hidden_states = self.resnets[0](hidden_states, temb)
577
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
578
            if attn is not None:
YiYi Xu's avatar
YiYi Xu committed
579
                hidden_states = attn(hidden_states, temb=temb)
Patrick von Platen's avatar
Patrick von Platen committed
580
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
581

582
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
583

584

Patrick von Platen's avatar
Patrick von Platen committed
585
586
587
588
589
590
591
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
592
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
593
594
595
596
597
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
598
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
599
600
        output_scale_factor=1.0,
        cross_attention_dim=1280,
601
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
602
        use_linear_projection=False,
603
        upcast_attention=False,
604
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
605
606
607
    ):
        super().__init__()

608
        self.has_cross_attention = True
609
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
610
611
612
613
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
614
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
630
631
632
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
633
634
                        num_attention_heads,
                        in_channels // num_attention_heads,
635
                        in_channels=in_channels,
636
                        num_layers=transformer_layers_per_block,
637
638
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
639
                        use_linear_projection=use_linear_projection,
640
                        upcast_attention=upcast_attention,
641
                        attention_type=attention_type,
642
643
644
645
646
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
647
648
                        num_attention_heads,
                        in_channels // num_attention_heads,
649
650
651
652
653
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
654
655
                )
            resnets.append(
656
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

673
674
        self.gradient_checkpointing = False

675
    def forward(
676
677
678
679
680
681
682
683
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
684
685
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
686
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
687
688
689
690
691
692
693
694
695
696
697
698
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
ethansmith2000's avatar
ethansmith2000 committed
699
                hidden_states = attn(
700
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
701
702
703
704
705
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
                )[0]
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
722
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

        return hidden_states


class UNetMidBlock2DSimpleCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
739
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
740
741
        output_scale_factor=1.0,
        cross_attention_dim=1280,
742
        skip_time_act=False,
743
        only_cross_attention=False,
744
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
745
746
747
748
749
    ):
        super().__init__()

        self.has_cross_attention = True

750
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
751
752
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

753
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
768
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
769
770
771
772
773
            )
        ]
        attentions = []

        for _ in range(num_layers):
774
775
776
777
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
778
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
779
                Attention(
Will Berman's avatar
Will Berman committed
780
781
782
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
783
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
784
785
786
787
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
788
                    only_cross_attention=only_cross_attention,
789
                    cross_attention_norm=cross_attention_norm,
790
                    processor=processor,
Will Berman's avatar
Will Berman committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
805
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
806
807
808
809
810
811
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

812
    def forward(
813
814
815
816
817
818
819
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
820
821
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
822
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
823
824
825
826
827
828
829
830
831
832
833
834

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

835
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
836
837
838
839
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
840
                encoder_hidden_states=encoder_hidden_states,
841
                attention_mask=mask,
842
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
843
844
845
            )

            # resnet
846
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
847
848
849
850

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
851
class AttnDownBlock2D(nn.Module):
852
853
854
855
856
857
858
859
860
861
862
863
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
864
        attention_head_dim=1,
865
        output_scale_factor=1.0,
866
        downsample_padding=1,
867
        downsample_type="conv",
868
869
870
871
    ):
        super().__init__()
        resnets = []
        attentions = []
872
        self.downsample_type = downsample_type
873

874
875
876
877
878
879
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

880
881
882
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
883
                ResnetBlock2D(
884
885
886
887
888
889
890
891
892
893
894
895
896
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
897
                Attention(
898
                    out_channels,
899
900
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
901
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
902
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
903
                    norm_num_groups=resnet_groups,
904
905
906
907
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
908
909
910
911
912
913
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

914
        if downsample_type == "conv":
915
            self.downsamplers = nn.ModuleList(
916
917
                [
                    Downsample2D(
918
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
919
920
                    )
                ]
921
            )
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
        elif downsample_type == "resnet":
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        down=True,
                    )
                ]
            )
940
941
942
        else:
            self.downsamplers = None

943
944
945
946
947
    def forward(self, hidden_states, temb=None, upsample_size=None, cross_attention_kwargs=None):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        lora_scale = cross_attention_kwargs.get("scale", 1.0)

948
949
950
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
951
952
953
            cross_attention_kwargs.update({"scale": lora_scale})
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
954
            output_states = output_states + (hidden_states,)
955
956
957

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
958
                if self.downsample_type == "resnet":
959
                    hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale)
960
                else:
961
                    hidden_states = downsampler(hidden_states, scale=lora_scale)
962
963
964
965
966
967

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
968
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
969
970
971
972
973
974
975
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
976
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
977
978
979
980
981
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
982
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
983
984
985
986
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
987
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
988
        use_linear_projection=False,
989
        only_cross_attention=False,
990
        upcast_attention=False,
991
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
992
993
994
995
996
    ):
        super().__init__()
        resnets = []
        attentions = []

997
        self.has_cross_attention = True
998
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
999
1000
1001
1002

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1003
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
1016
1017
1018
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1019
1020
                        num_attention_heads,
                        out_channels // num_attention_heads,
1021
                        in_channels=out_channels,
1022
                        num_layers=transformer_layers_per_block,
1023
1024
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1025
                        use_linear_projection=use_linear_projection,
1026
                        only_cross_attention=only_cross_attention,
1027
                        upcast_attention=upcast_attention,
1028
                        attention_type=attention_type,
1029
1030
1031
1032
1033
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1034
1035
                        num_attention_heads,
                        out_channels // num_attention_heads,
1036
1037
1038
1039
1040
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1041
1042
1043
1044
1045
1046
1047
1048
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1049
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1050
1051
1052
1053
1054
1055
                    )
                ]
            )
        else:
            self.downsamplers = None

1056
1057
        self.gradient_checkpointing = False

1058
    def forward(
1059
1060
1061
1062
1063
1064
1065
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
1066
        additional_residuals=None,
1067
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1068
1069
        output_states = ()

1070
1071
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

Will Berman's avatar
Will Berman committed
1072
1073
1074
        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
1075
1076
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1077
                def create_custom_forward(module, return_dict=None):
1078
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1079
1080
1081
1082
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1083
1084
1085

                    return custom_forward

1086
1087
1088
1089
1090
1091
1092
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1093
                hidden_states = attn(
1094
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1095
1096
1097
1098
1099
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1100
                )[0]
1101
            else:
1102
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1103
1104
1105
1106
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1107
1108
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1109
1110
                    return_dict=False,
                )[0]
1111

Will Berman's avatar
Will Berman committed
1112
1113
1114
1115
            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

1116
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1117
1118
1119

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1120
                hidden_states = downsampler(hidden_states, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1121

1122
            output_states = output_states + (hidden_states,)
Patrick von Platen's avatar
Patrick von Platen committed
1123
1124
1125
1126

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1127
class DownBlock2D(nn.Module):
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
1142
        downsample_padding=1,
1143
1144
1145
1146
1147
1148
1149
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1150
                ResnetBlock2D(
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
1168
1169
                [
                    Downsample2D(
1170
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
1171
1172
                    )
                ]
1173
1174
1175
1176
            )
        else:
            self.downsamplers = None

1177
1178
        self.gradient_checkpointing = False

1179
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
1180
1181
1182
        output_states = ()

        for resnet in self.resnets:
1183
1184
1185
1186
1187
1188
1189
1190
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1191
1192
1193
1194
1195
1196
1197
1198
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1199
            else:
1200
                hidden_states = resnet(hidden_states, temb, scale=scale)
1201

1202
            output_states = output_states + (hidden_states,)
1203
1204
1205

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1206
                hidden_states = downsampler(hidden_states, scale=scale)
1207

1208
            output_states = output_states + (hidden_states,)
1209
1210
1211
1212

        return hidden_states, output_states


1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1235
                ResnetBlock2D(
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1255
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1256
1257
1258
1259
1260
1261
                    )
                ]
            )
        else:
            self.downsamplers = None

1262
    def forward(self, hidden_states, scale: float = 1.0):
1263
        for resnet in self.resnets:
1264
            hidden_states = resnet(hidden_states, temb=None, scale=scale)
1265
1266
1267

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1268
                hidden_states = downsampler(hidden_states, scale)
1269
1270
1271
1272

        return hidden_states


1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1285
        attention_head_dim=1,
1286
1287
1288
1289
1290
1291
1292
1293
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

1294
1295
1296
1297
1298
1299
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1300
1301
1302
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
1303
                ResnetBlock2D(
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1317
                Attention(
1318
                    out_channels,
1319
1320
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1321
1322
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1323
                    norm_num_groups=resnet_groups,
1324
1325
1326
1327
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
1338
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
1339
1340
1341
1342
1343
1344
                    )
                ]
            )
        else:
            self.downsamplers = None

1345
    def forward(self, hidden_states, scale: float = 1.0):
1346
        for resnet, attn in zip(self.resnets, self.attentions):
1347
1348
1349
            hidden_states = resnet(hidden_states, temb=None, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1350
1351
1352

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1353
                hidden_states = downsampler(hidden_states, scale)
1354
1355
1356
1357

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1358
class AttnSkipDownBlock2D(nn.Module):
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
1370
        attention_head_dim=1,
1371
1372
1373
1374
1375
1376
1377
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

1378
1379
1380
1381
1382
1383
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

1384
1385
1386
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1387
                ResnetBlock2D(
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
1402
                Attention(
1403
                    out_channels,
1404
1405
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
1406
1407
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
1408
1409
1410
1411
1412
                    norm_num_groups=32,
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
1413
1414
1415
1416
                )
            )

        if add_downsample:
1417
            self.resnet_down = ResnetBlock2D(
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1428
                use_in_shortcut=True,
1429
1430
1431
                down=True,
                kernel="fir",
            )
1432
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1433
1434
1435
1436
1437
1438
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

1439
    def forward(self, hidden_states, temb=None, skip_sample=None, scale: float = 1.0):
1440
1441
1442
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
1443
1444
1445
            hidden_states = resnet(hidden_states, temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
1446
1447
1448
            output_states += (hidden_states,)

        if self.downsamplers is not None:
1449
            hidden_states = self.resnet_down(hidden_states, temb, scale=scale)
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1460
class SkipDownBlock2D(nn.Module):
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1482
                ResnetBlock2D(
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
1498
            self.resnet_down = ResnetBlock2D(
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1509
                use_in_shortcut=True,
1510
1511
1512
                down=True,
                kernel="fir",
            )
1513
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1514
1515
1516
1517
1518
1519
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

1520
    def forward(self, hidden_states, temb=None, skip_sample=None, scale: float = 1.0):
1521
1522
1523
        output_states = ()

        for resnet in self.resnets:
1524
            hidden_states = resnet(hidden_states, temb, scale)
1525
1526
1527
            output_states += (hidden_states,)

        if self.downsamplers is not None:
1528
            hidden_states = self.resnet_down(hidden_states, temb, scale)
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Will Berman's avatar
Will Berman committed
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
class ResnetDownsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
1554
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1573
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1593
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1594
1595
1596
1597
1598
1599
1600
1601
1602
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1603
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
Will Berman's avatar
Will Berman committed
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1615
1616
1617
1618
1619
1620
1621
1622
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
1623
            else:
1624
                hidden_states = resnet(hidden_states, temb, scale)
Will Berman's avatar
Will Berman committed
1625

1626
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1627
1628
1629

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1630
                hidden_states = downsampler(hidden_states, temb, scale)
Will Berman's avatar
Will Berman committed
1631

1632
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

        return hidden_states, output_states


class SimpleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1650
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
1651
1652
1653
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_downsample=True,
1654
        skip_time_act=False,
1655
        only_cross_attention=False,
1656
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
1657
1658
1659
1660
1661
1662
1663
1664
    ):
        super().__init__()

        self.has_cross_attention = True

        resnets = []
        attentions = []

1665
1666
        self.attention_head_dim = attention_head_dim
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1682
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1683
1684
                )
            )
1685
1686
1687
1688
1689

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1690
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1691
                Attention(
Will Berman's avatar
Will Berman committed
1692
1693
1694
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
1695
                    dim_head=attention_head_dim,
Will Berman's avatar
Will Berman committed
1696
1697
1698
1699
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1700
                    only_cross_attention=only_cross_attention,
1701
                    cross_attention_norm=cross_attention_norm,
1702
                    processor=processor,
Will Berman's avatar
Will Berman committed
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
1722
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1723
1724
1725
1726
1727
1728
1729
1730
1731
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1732
    def forward(
1733
1734
1735
1736
1737
1738
1739
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1740
    ):
Will Berman's avatar
Will Berman committed
1741
        output_states = ()
1742
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
1743

1744
1745
        lora_scale = cross_attention_kwargs.get("scale", 1.0)

1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
1757
        for resnet, attn in zip(self.resnets, self.attentions):
1758
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
1759

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
ethansmith2000's avatar
ethansmith2000 committed
1770
                hidden_states = attn(
1771
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1772
1773
1774
1775
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=mask,
                    **cross_attention_kwargs,
                )
1776
            else:
1777
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1778
1779
1780
1781

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
1782
                    attention_mask=mask,
1783
1784
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
1785

1786
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1787
1788
1789

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1790
                hidden_states = downsampler(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
1791

1792
            output_states = output_states + (hidden_states,)
Will Berman's avatar
Will Berman committed
1793
1794
1795
1796

        return hidden_states, output_states


1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
class KDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
        add_downsample=False,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            # YiYi's comments- might be able to use FirDownsample2D, look into details later
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1843
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1855
1856
1857
1858
1859
1860
1861
1862
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1863
            else:
1864
                hidden_states = resnet(hidden_states, temb, scale)
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


class KCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        cross_attention_dim: int,
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_group_size: int = 32,
        add_downsample=True,
1886
        attention_head_dim: int = 64,
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
        add_self_attention: bool = False,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=groups,
                    groups_out=groups_out,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    out_channels,
1919
1920
                    out_channels // attention_head_dim,
                    attention_head_dim,
1921
1922
1923
1924
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
1925
                    cross_attention_norm="layer_norm",
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
                    group_size=resnet_group_size,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList([KDownsample2D()])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
1941
1942
1943
1944
1945
1946
1947
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1948
1949
    ):
        output_states = ()
1950
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1964
1965
1966
1967
1968
1969
1970
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1971
                hidden_states = attn(
1972
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1973
1974
1975
1976
1977
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
1978
                )
1979
            else:
1980
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1981
1982
1983
1984
1985
1986
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
1987
                    encoder_attention_mask=encoder_attention_mask,
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
                )

            if self.downsamplers is None:
                output_states += (None,)
            else:
                output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
2002
class AttnUpBlock2D(nn.Module):
2003
2004
2005
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2006
2007
        prev_output_channel: int,
        out_channels: int,
2008
        temb_channels: int,
2009
        resolution_idx: int = None,
2010
2011
2012
2013
2014
2015
2016
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2017
        attention_head_dim=1,
2018
        output_scale_factor=1.0,
2019
        upsample_type="conv",
2020
2021
2022
2023
2024
    ):
        super().__init__()
        resnets = []
        attentions = []

2025
2026
        self.upsample_type = upsample_type

2027
2028
2029
2030
2031
2032
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2033
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2034
2035
2036
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2037
            resnets.append(
2038
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2039
2040
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2052
                Attention(
Patrick von Platen's avatar
Patrick von Platen committed
2053
                    out_channels,
2054
2055
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2056
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
2057
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
2058
                    norm_num_groups=resnet_groups,
2059
2060
2061
2062
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2063
2064
2065
2066
2067
2068
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

2069
        if upsample_type == "conv":
Patrick von Platen's avatar
Patrick von Platen committed
2070
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
        elif upsample_type == "resnet":
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        up=True,
                    )
                ]
            )
2089
2090
2091
        else:
            self.upsamplers = None

2092
2093
        self.resolution_idx = resolution_idx

2094
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
2095
2096
2097
2098
2099
2100
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2101
2102
2103
            hidden_states = resnet(hidden_states, temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, **cross_attention_kwargs)
2104
2105
2106

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2107
                if self.upsample_type == "resnet":
2108
                    hidden_states = upsampler(hidden_states, temb=temb, scale=scale)
2109
                else:
2110
                    hidden_states = upsampler(hidden_states, scale=scale)
2111
2112
2113
2114

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2115
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
2116
2117
2118
2119
2120
2121
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
2122
        resolution_idx: int = None,
Patrick von Platen's avatar
Patrick von Platen committed
2123
2124
        dropout: float = 0.0,
        num_layers: int = 1,
2125
        transformer_layers_per_block: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
2126
2127
2128
2129
2130
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2131
        num_attention_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
2132
2133
2134
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2135
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
2136
        use_linear_projection=False,
2137
        only_cross_attention=False,
2138
        upcast_attention=False,
2139
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
2140
2141
2142
2143
2144
    ):
        super().__init__()
        resnets = []
        attentions = []

2145
        self.has_cross_attention = True
2146
        self.num_attention_heads = num_attention_heads
Patrick von Platen's avatar
Patrick von Platen committed
2147
2148
2149
2150
2151
2152

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
2153
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
2166
2167
2168
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
2169
2170
                        num_attention_heads,
                        out_channels // num_attention_heads,
2171
                        in_channels=out_channels,
2172
                        num_layers=transformer_layers_per_block,
2173
2174
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
2175
                        use_linear_projection=use_linear_projection,
2176
                        only_cross_attention=only_cross_attention,
2177
                        upcast_attention=upcast_attention,
2178
                        attention_type=attention_type,
2179
2180
2181
2182
2183
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
2184
2185
                        num_attention_heads,
                        out_channels // num_attention_heads,
2186
2187
2188
2189
2190
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
2191
2192
2193
2194
2195
2196
2197
2198
2199
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2200
        self.gradient_checkpointing = False
2201
        self.resolution_idx = resolution_idx
2202
2203
2204

    def forward(
        self,
2205
2206
2207
2208
2209
2210
2211
2212
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2213
    ):
2214
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
2215
2216
2217
2218
2219
2220
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )
2221

Patrick von Platen's avatar
Patrick von Platen committed
2222
2223
2224
2225
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

Patrick von Platen's avatar
Patrick von Platen committed
2239
2240
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2241
2242
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
2243
                def create_custom_forward(module, return_dict=None):
2244
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
2245
2246
2247
2248
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
2249
2250
2251

                    return custom_forward

2252
2253
2254
2255
2256
2257
2258
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
2259
                hidden_states = attn(
2260
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
2261
2262
2263
2264
2265
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
2266
                )[0]
2267
            else:
2268
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
2269
2270
2271
2272
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
2273
2274
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
2275
2276
                    return_dict=False,
                )[0]
Patrick von Platen's avatar
Patrick von Platen committed
2277
2278
2279

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2280
                hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2281
2282
2283
2284

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2285
class UpBlock2D(nn.Module):
2286
2287
2288
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
2289
2290
        prev_output_channel: int,
        out_channels: int,
2291
        temb_channels: int,
2292
        resolution_idx: int = None,
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
2307
2308
2309
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

2310
            resnets.append(
2311
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
2312
2313
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
2328
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
2329
2330
2331
        else:
            self.upsamplers = None

2332
        self.gradient_checkpointing = False
2333
        self.resolution_idx = resolution_idx
2334

2335
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
2336
2337
2338
2339
2340
2341
2342
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )

2343
2344
2345
2346
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

2360
2361
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2362
2363
2364
2365
2366
2367
2368
2369
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2370
2371
2372
2373
2374
2375
2376
2377
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
2378
            else:
2379
                hidden_states = resnet(hidden_states, temb, scale=scale)
2380
2381
2382

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2383
                hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
2384
2385

        return hidden_states
2386
2387


2388
2389
2390
2391
2392
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
2393
        resolution_idx: int = None,
2394
2395
2396
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
YiYi Xu's avatar
YiYi Xu committed
2397
        resnet_time_scale_shift: str = "default",  # default, spatial
2398
2399
2400
2401
2402
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2403
        temb_channels=None,
2404
2405
2406
2407
2408
2409
2410
2411
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2412
                ResnetBlock2D(
2413
2414
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2415
                    temb_channels=temb_channels,
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2433
2434
        self.resolution_idx = resolution_idx

2435
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
2436
        for resnet in self.resnets:
2437
            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
2438
2439
2440
2441
2442
2443
2444
2445

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


2446
2447
2448
2449
2450
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
2451
        resolution_idx: int = None,
2452
2453
2454
2455
2456
2457
2458
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2459
        attention_head_dim=1,
2460
2461
        output_scale_factor=1.0,
        add_upsample=True,
YiYi Xu's avatar
YiYi Xu committed
2462
        temb_channels=None,
2463
2464
2465
2466
2467
    ):
        super().__init__()
        resnets = []
        attentions = []

2468
2469
2470
2471
2472
2473
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2474
2475
2476
2477
        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
2478
                ResnetBlock2D(
2479
2480
                    in_channels=input_channels,
                    out_channels=out_channels,
YiYi Xu's avatar
YiYi Xu committed
2481
                    temb_channels=temb_channels,
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
2492
                Attention(
2493
                    out_channels,
2494
2495
                    heads=out_channels // attention_head_dim,
                    dim_head=attention_head_dim,
2496
2497
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
2498
                    norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
YiYi Xu's avatar
YiYi Xu committed
2499
                    spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
2500
2501
2502
2503
                    residual_connection=True,
                    bias=True,
                    upcast_softmax=True,
                    _from_deprecated_attn_block=True,
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

2515
2516
        self.resolution_idx = resolution_idx

2517
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
2518
        for resnet, attn in zip(self.resnets, self.attentions):
2519
2520
2521
            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
            cross_attention_kwargs = {"scale": scale}
            hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs)
2522
2523
2524

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2525
                hidden_states = upsampler(hidden_states, scale=scale)
2526
2527
2528
2529

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2530
class AttnSkipUpBlock2D(nn.Module):
2531
2532
2533
2534
2535
2536
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
2537
        resolution_idx: int = None,
2538
2539
2540
2541
2542
2543
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
2544
        attention_head_dim=1,
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2557
                ResnetBlock2D(
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

2572
2573
2574
2575
2576
2577
        if attention_head_dim is None:
            logger.warn(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
            )
            attention_head_dim = out_channels

2578
        self.attentions.append(
2579
            Attention(
2580
                out_channels,
2581
2582
                heads=out_channels // attention_head_dim,
                dim_head=attention_head_dim,
2583
2584
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
2585
2586
2587
2588
2589
                norm_num_groups=32,
                residual_connection=True,
                bias=True,
                upcast_softmax=True,
                _from_deprecated_attn_block=True,
2590
2591
2592
2593
2594
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2595
            self.resnet_up = ResnetBlock2D(
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2607
                use_in_shortcut=True,
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

2622
2623
        self.resolution_idx = resolution_idx

2624
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None, scale: float = 1.0):
2625
2626
2627
2628
2629
2630
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2631
            hidden_states = resnet(hidden_states, temb, scale=scale)
2632

2633
2634
        cross_attention_kwargs = {"scale": scale}
        hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs)
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

2648
            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
2649
2650
2651
2652

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
2653
class SkipUpBlock2D(nn.Module):
2654
2655
2656
2657
2658
2659
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
2660
        resolution_idx: int = None,
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
2679
                ResnetBlock2D(
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
2696
            self.resnet_up = ResnetBlock2D(
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2708
                use_in_shortcut=True,
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

2723
2724
        self.resolution_idx = resolution_idx

2725
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None, scale: float = 1.0):
2726
2727
2728
2729
2730
2731
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2732
            hidden_states = resnet(hidden_states, temb, scale=scale)
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

2746
            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
2747
2748

        return hidden_states, skip_sample
Will Berman's avatar
Will Berman committed
2749
2750
2751
2752
2753
2754
2755
2756
2757


class ResnetUpsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
2758
        resolution_idx: int = None,
Will Berman's avatar
Will Berman committed
2759
2760
2761
2762
2763
2764
2765
2766
2767
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
2768
        skip_time_act=False,
Will Berman's avatar
Will Berman committed
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2789
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2809
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2810
2811
2812
2813
2814
2815
2816
2817
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
2818
        self.resolution_idx = resolution_idx
Will Berman's avatar
Will Berman committed
2819

2820
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
Will Berman's avatar
Will Berman committed
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

2835
2836
2837
2838
2839
2840
2841
2842
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
Will Berman's avatar
Will Berman committed
2843
            else:
2844
                hidden_states = resnet(hidden_states, temb, scale=scale)
Will Berman's avatar
Will Berman committed
2845
2846
2847

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
2848
                hidden_states = upsampler(hidden_states, temb, scale=scale)
Will Berman's avatar
Will Berman committed
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859

        return hidden_states


class SimpleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
2860
        resolution_idx: int = None,
Will Berman's avatar
Will Berman committed
2861
2862
2863
2864
2865
2866
2867
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2868
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
2869
2870
2871
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
2872
        skip_time_act=False,
2873
        only_cross_attention=False,
2874
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
2875
2876
2877
2878
2879
2880
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
2881
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
2882

2883
        self.num_heads = out_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2901
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2902
2903
                )
            )
2904
2905
2906
2907
2908

            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
2909
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
2910
                Attention(
Will Berman's avatar
Will Berman committed
2911
2912
2913
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
2914
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
2915
2916
2917
2918
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
2919
                    only_cross_attention=only_cross_attention,
2920
                    cross_attention_norm=cross_attention_norm,
2921
                    processor=processor,
Will Berman's avatar
Will Berman committed
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
2941
                        skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2942
2943
2944
2945
2946
2947
2948
2949
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
2950
        self.resolution_idx = resolution_idx
Will Berman's avatar
Will Berman committed
2951
2952
2953

    def forward(
        self,
2954
2955
2956
2957
2958
2959
2960
2961
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
2962
    ):
2963
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
2964

2965
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
2977
2978
2979
2980
2981
2982
2983
        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

2984
            if self.training and self.gradient_checkpointing:
Will Berman's avatar
Will Berman committed
2985

2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
ethansmith2000's avatar
ethansmith2000 committed
2996
                hidden_states = attn(
2997
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
2998
2999
3000
3001
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=mask,
                    **cross_attention_kwargs,
                )
3002
            else:
3003
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
3004
3005
3006
3007

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
3008
                    attention_mask=mask,
3009
3010
                    **cross_attention_kwargs,
                )
Will Berman's avatar
Will Berman committed
3011
3012
3013

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
3014
                hidden_states = upsampler(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
3015
3016

        return hidden_states
3017
3018
3019
3020
3021
3022
3023
3024


class KUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
3025
        resolution_idx: int,
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
        dropout: float = 0.0,
        num_layers: int = 5,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: Optional[int] = 32,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        k_in_channels = 2 * out_channels
        k_out_channels = in_channels
        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
3067
        self.resolution_idx = resolution_idx
3068

3069
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

3083
3084
3085
3086
3087
3088
3089
3090
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
3091
            else:
3092
                hidden_states = resnet(hidden_states, temb, scale=scale)
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class KCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
3107
        resolution_idx: int,
3108
3109
3110
3111
3112
        dropout: float = 0.0,
        num_layers: int = 4,
        resnet_eps: float = 1e-5,
        resnet_act_fn: str = "gelu",
        resnet_group_size: int = 32,
3113
        attention_head_dim=1,  # attention dim_head
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
        cross_attention_dim: int = 768,
        add_upsample: bool = True,
        upcast_attention: bool = False,
    ):
        super().__init__()
        resnets = []
        attentions = []

        is_first_block = in_channels == out_channels == temb_channels
        is_middle_block = in_channels != out_channels
        add_self_attention = True if is_first_block else False

        self.has_cross_attention = True
3127
        self.attention_head_dim = attention_head_dim
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162

        # in_channels, and out_channels for the block (k-unet)
        k_in_channels = out_channels if is_first_block else 2 * out_channels
        k_out_channels = in_channels

        num_layers = num_layers - 1

        for i in range(num_layers):
            in_channels = k_in_channels if i == 0 else out_channels
            groups = in_channels // resnet_group_size
            groups_out = out_channels // resnet_group_size

            if is_middle_block and (i == num_layers - 1):
                conv_2d_out_channels = k_out_channels
            else:
                conv_2d_out_channels = None

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    conv_2d_out_channels=conv_2d_out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=groups,
                    groups_out=groups_out,
                    dropout=dropout,
                    non_linearity=resnet_act_fn,
                    time_embedding_norm="ada_group",
                    conv_shortcut_bias=False,
                )
            )
            attentions.append(
                KAttentionBlock(
                    k_out_channels if (i == num_layers - 1) else out_channels,
3163
                    k_out_channels // attention_head_dim
3164
                    if (i == num_layers - 1)
3165
3166
                    else out_channels // attention_head_dim,
                    attention_head_dim,
3167
3168
3169
3170
                    cross_attention_dim=cross_attention_dim,
                    temb_channels=temb_channels,
                    attention_bias=True,
                    add_self_attention=add_self_attention,
3171
                    cross_attention_norm="layer_norm",
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
                    upcast_attention=upcast_attention,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.attentions = nn.ModuleList(attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([KUpsample2D()])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
3185
        self.resolution_idx = resolution_idx
3186
3187
3188

    def forward(
        self,
3189
3190
3191
3192
3193
3194
3195
3196
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3197
3198
3199
3200
3201
    ):
        res_hidden_states_tuple = res_hidden_states_tuple[-1]
        if res_hidden_states_tuple is not None:
            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)

3202
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

3215
3216
3217
3218
3219
3220
3221
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
3222
                hidden_states = attn(
3223
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
3224
3225
3226
3227
3228
3229
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                )
3230
            else:
3231
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
3232
3233
3234
3235
3236
3237
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    emb=temb,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
3238
                    encoder_attention_mask=encoder_attention_mask,
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


# can potentially later be renamed to `No-feed-forward` attention
class KAttentionBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        upcast_attention: bool = False,
        temb_channels: int = 768,  # for ada_group_norm
        add_self_attention: bool = False,
3277
        cross_attention_norm: Optional[str] = None,
3278
3279
3280
3281
3282
3283
3284
3285
        group_size: int = 32,
    ):
        super().__init__()
        self.add_self_attention = add_self_attention

        # 1. Self-Attn
        if add_self_attention:
            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3286
            self.attn1 = Attention(
3287
3288
3289
3290
3291
3292
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                cross_attention_dim=None,
3293
                cross_attention_norm=None,
3294
3295
3296
3297
            )

        # 2. Cross-Attn
        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
Patrick von Platen's avatar
Patrick von Platen committed
3298
        self.attn2 = Attention(
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            cross_attention_norm=cross_attention_norm,
        )

    def _to_3d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)

    def _to_4d(self, hidden_states, height, weight):
        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)

    def forward(
        self,
3317
3318
3319
3320
3321
3322
3323
3324
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        # TODO: mark emb as non-optional (self.norm2 requires it).
        #       requires assessing impact of change to positional param interface.
        emb: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        # 1. Self-Attention
        if self.add_self_attention:
            norm_hidden_states = self.norm1(hidden_states, emb)

            height, weight = norm_hidden_states.shape[2:]
            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=None,
3338
                attention_mask=attention_mask,
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
                **cross_attention_kwargs,
            )
            attn_output = self._to_4d(attn_output, height, weight)

            hidden_states = attn_output + hidden_states

        # 2. Cross-Attention/None
        norm_hidden_states = self.norm2(hidden_states, emb)

        height, weight = norm_hidden_states.shape[2:]
        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
3353
            attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
3354
3355
3356
3357
3358
3359
3360
            **cross_attention_kwargs,
        )
        attn_output = self._to_4d(attn_output, height, weight)

        hidden_states = attn_output + hidden_states

        return hidden_states