unet_2d_blocks.py 77.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import numpy as np
15
import torch
Patrick von Platen's avatar
Patrick von Platen committed
16
17
from torch import nn

18
19
from .attention import AttentionBlock, DualTransformer2DModel, Transformer2DModel
from .cross_attention import CrossAttention, CrossAttnAddedKVProcessor
20
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
Patrick von Platen's avatar
Patrick von Platen committed
21
22


23
24
25
26
27
28
29
30
31
32
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
33
    resnet_groups=None,
34
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
35
    downsample_padding=None,
36
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
37
    use_linear_projection=False,
38
    only_cross_attention=False,
39
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
40
    resnet_time_scale_shift="default",
41
):
Patrick von Platen's avatar
Patrick von Platen committed
42
43
44
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
45
46
47
48
49
50
51
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
52
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
53
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
54
55
56
57
58
59
60
61
62
63
64
65
66
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "ResnetDownsampleBlock2D":
        return ResnetDownsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
67
        )
Patrick von Platen's avatar
Patrick von Platen committed
68
69
    elif down_block_type == "AttnDownBlock2D":
        return AttnDownBlock2D(
70
71
72
73
74
75
76
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
77
            resnet_groups=resnet_groups,
78
            downsample_padding=downsample_padding,
79
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
80
            resnet_time_scale_shift=resnet_time_scale_shift,
81
        )
Patrick von Platen's avatar
Patrick von Platen committed
82
    elif down_block_type == "CrossAttnDownBlock2D":
83
        if cross_attention_dim is None:
84
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
85
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
86
87
88
89
90
91
92
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
93
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
94
            downsample_padding=downsample_padding,
95
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
96
            attn_num_head_channels=attn_num_head_channels,
97
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
98
            use_linear_projection=use_linear_projection,
99
            only_cross_attention=only_cross_attention,
100
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "SimpleCrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
        return SimpleCrossAttnDownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
            attn_num_head_channels=attn_num_head_channels,
            resnet_time_scale_shift=resnet_time_scale_shift,
Patrick von Platen's avatar
Patrick von Platen committed
118
        )
Patrick von Platen's avatar
Patrick von Platen committed
119
120
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
121
122
123
124
125
126
127
128
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
129
            resnet_time_scale_shift=resnet_time_scale_shift,
130
        )
Patrick von Platen's avatar
Patrick von Platen committed
131
132
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
133
134
135
136
137
138
139
140
141
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
142
            resnet_time_scale_shift=resnet_time_scale_shift,
143
        )
144
145
146
147
148
149
150
151
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
152
            resnet_groups=resnet_groups,
153
            downsample_padding=downsample_padding,
Will Berman's avatar
Will Berman committed
154
            resnet_time_scale_shift=resnet_time_scale_shift,
155
        )
Will Berman's avatar
Will Berman committed
156
157
158
159
160
161
162
163
164
165
166
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
167
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
168
169
        )
    raise ValueError(f"{down_block_type} does not exist.")
170
171
172
173
174
175


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
176
177
    out_channels,
    prev_output_channel,
178
179
180
181
182
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
183
    resnet_groups=None,
184
    cross_attention_dim=None,
185
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
186
    use_linear_projection=False,
187
    only_cross_attention=False,
188
    upcast_attention=False,
Will Berman's avatar
Will Berman committed
189
    resnet_time_scale_shift="default",
190
):
Patrick von Platen's avatar
Patrick von Platen committed
191
192
193
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
194
195
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
196
197
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
198
199
200
201
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
202
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "ResnetUpsampleBlock2D":
        return ResnetUpsampleBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
217
        )
Patrick von Platen's avatar
Patrick von Platen committed
218
    elif up_block_type == "CrossAttnUpBlock2D":
219
220
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
221
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
222
223
224
225
226
227
228
229
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
230
            resnet_groups=resnet_groups,
231
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
232
            attn_num_head_channels=attn_num_head_channels,
233
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
234
            use_linear_projection=use_linear_projection,
235
            only_cross_attention=only_cross_attention,
236
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "SimpleCrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
        return SimpleCrossAttnUpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
            attn_num_head_channels=attn_num_head_channels,
            resnet_time_scale_shift=resnet_time_scale_shift,
Patrick von Platen's avatar
Patrick von Platen committed
255
        )
Patrick von Platen's avatar
Patrick von Platen committed
256
257
    elif up_block_type == "AttnUpBlock2D":
        return AttnUpBlock2D(
258
259
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
260
261
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
262
263
264
265
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
266
            resnet_groups=resnet_groups,
267
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
268
            resnet_time_scale_shift=resnet_time_scale_shift,
269
        )
Patrick von Platen's avatar
Patrick von Platen committed
270
271
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
272
273
274
275
276
277
278
279
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
Will Berman's avatar
Will Berman committed
280
            resnet_time_scale_shift=resnet_time_scale_shift,
281
        )
Patrick von Platen's avatar
Patrick von Platen committed
282
283
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
284
285
286
287
288
289
290
291
292
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
293
            resnet_time_scale_shift=resnet_time_scale_shift,
294
        )
295
296
297
298
299
300
301
302
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
303
            resnet_groups=resnet_groups,
Will Berman's avatar
Will Berman committed
304
            resnet_time_scale_shift=resnet_time_scale_shift,
305
        )
Will Berman's avatar
Will Berman committed
306
307
308
309
310
311
312
313
314
315
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            attn_num_head_channels=attn_num_head_channels,
Will Berman's avatar
Will Berman committed
316
            resnet_time_scale_shift=resnet_time_scale_shift,
Will Berman's avatar
Will Berman committed
317
        )
318
    raise ValueError(f"{up_block_type} does not exist.")
319
320


Patrick von Platen's avatar
Patrick von Platen committed
321
322
323
324
325
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
326
        dropout: float = 0.0,
327
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
328
329
330
331
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
332
        resnet_pre_norm: bool = True,
Will Berman's avatar
Will Berman committed
333
        add_attention: bool = True,
334
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
335
336
337
        output_scale_factor=1.0,
    ):
        super().__init__()
338
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Will Berman's avatar
Will Berman committed
339
        self.add_attention = add_attention
Patrick von Platen's avatar
Patrick von Platen committed
340

341
342
        # there is always at least one resnet
        resnets = [
343
            ResnetBlock2D(
344
345
346
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
347
                eps=resnet_eps,
348
349
350
351
352
353
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
354
            )
355
356
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
357

358
        for _ in range(num_layers):
Will Berman's avatar
Will Berman committed
359
360
361
362
363
364
365
366
367
            if self.add_attention:
                attentions.append(
                    AttentionBlock(
                        in_channels,
                        num_head_channels=attn_num_head_channels,
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
                        norm_num_groups=resnet_groups,
                    )
368
                )
Will Berman's avatar
Will Berman committed
369
370
371
            else:
                attentions.append(None)

372
            resnets.append(
373
                ResnetBlock2D(
374
375
376
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
377
                    eps=resnet_eps,
378
379
380
381
382
383
384
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
385
386
            )

387
388
389
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Will Berman's avatar
Will Berman committed
390
    def forward(self, hidden_states, temb=None):
Patrick von Platen's avatar
Patrick von Platen committed
391
        hidden_states = self.resnets[0](hidden_states, temb)
392
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
393
            if attn is not None:
Patrick von Platen's avatar
Patrick von Platen committed
394
395
                hidden_states = attn(hidden_states)
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
396

397
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
398

399

Patrick von Platen's avatar
Patrick von Platen committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        cross_attention_dim=1280,
415
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
416
        use_linear_projection=False,
417
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
418
419
420
    ):
        super().__init__()

421
        self.has_cross_attention = True
422
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
423
424
425
426
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
427
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
443
444
445
446
447
448
449
450
451
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
452
                        use_linear_projection=use_linear_projection,
453
                        upcast_attention=upcast_attention,
454
455
456
457
458
459
460
461
462
463
464
465
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
466
467
                )
            resnets.append(
468
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

485
486
487
    def forward(
        self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
    ):
Patrick von Platen's avatar
Patrick von Platen committed
488
489
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
490
491
492
493
494
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
            ).sample
Will Berman's avatar
Will Berman committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


class UNetMidBlock2DSimpleCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        cross_attention_dim=1280,
    ):
        super().__init__()

        self.has_cross_attention = True

        self.attn_num_head_channels = attn_num_head_channels
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        self.num_heads = in_channels // self.attn_num_head_channels

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
            attentions.append(
                CrossAttention(
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
                    dim_head=attn_num_head_channels,
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
553
                    processor=CrossAttnAddedKVProcessor(),
Will Berman's avatar
Will Berman committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

574
575
576
577
    def forward(
        self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
578
579
580
581
582
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
583
                encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
584
                attention_mask=attention_mask,
585
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
586
587
588
            )

            # resnet
Patrick von Platen's avatar
Patrick von Platen committed
589
590
591
592
593
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
594
class AttnDownBlock2D(nn.Module):
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
609
        downsample_padding=1,
610
611
612
613
614
615
616
617
618
        add_downsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
619
                ResnetBlock2D(
620
621
622
623
624
625
626
627
628
629
630
631
632
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
633
                AttentionBlock(
634
635
636
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
637
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
638
                    norm_num_groups=resnet_groups,
639
640
641
642
643
644
645
646
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
647
648
                [
                    Downsample2D(
649
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
650
651
                    )
                ]
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
673
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
691
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
692
        use_linear_projection=False,
693
        only_cross_attention=False,
694
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
695
696
697
698
699
    ):
        super().__init__()
        resnets = []
        attentions = []

700
        self.has_cross_attention = True
701
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
702
703
704
705

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
706
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
707
708
709
710
711
712
713
714
715
716
717
718
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
719
720
721
722
723
724
725
726
727
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
728
                        use_linear_projection=use_linear_projection,
729
                        only_cross_attention=only_cross_attention,
730
                        upcast_attention=upcast_attention,
731
732
733
734
735
736
737
738
739
740
741
742
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
743
744
745
746
747
748
749
750
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
751
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
752
753
754
755
756
757
                    )
                ]
            )
        else:
            self.downsamplers = None

758
759
        self.gradient_checkpointing = False

760
761
762
    def forward(
        self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
    ):
Will Berman's avatar
Will Berman committed
763
        # TODO(Patrick, William) - attention mask is not used
Patrick von Platen's avatar
Patrick von Platen committed
764
765
766
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
767
768
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
769
                def create_custom_forward(module, return_dict=None):
770
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
771
772
773
774
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
775
776
777
778
779

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
780
781
782
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
783
                    cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
784
                )[0]
785
786
            else:
                hidden_states = resnet(hidden_states, temb)
787
788
789
790
791
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample
792

Patrick von Platen's avatar
Patrick von Platen committed
793
794
795
796
797
798
799
800
801
802
803
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
804
class DownBlock2D(nn.Module):
805
806
807
808
809
810
811
812
813
814
815
816
817
818
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
819
        downsample_padding=1,
820
821
822
823
824
825
826
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
827
                ResnetBlock2D(
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
845
846
                [
                    Downsample2D(
847
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
848
849
                    )
                ]
850
851
852
853
            )
        else:
            self.downsamplers = None

854
855
        self.gradient_checkpointing = False

856
857
858
859
    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
860
861
862
863
864
865
866
867
868
869
870
871
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

872
873
874
875
876
877
878
879
880
881
882
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
905
                ResnetBlock2D(
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
925
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
967
                ResnetBlock2D(
968
969
970
971
972
973
974
975
976
977
978
979
980
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
981
                AttentionBlock(
982
983
984
985
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
986
                    norm_num_groups=resnet_groups,
987
988
989
990
991
992
993
994
995
996
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
997
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1016
class AttnSkipDownBlock2D(nn.Module):
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=np.sqrt(2.0),
        downsample_padding=1,
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1040
                ResnetBlock2D(
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
1055
                AttentionBlock(
1056
1057
1058
1059
1060
1061
1062
1063
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
                )
            )

        if add_downsample:
1064
            self.resnet_down = ResnetBlock2D(
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1075
                use_in_shortcut=True,
1076
1077
1078
                down=True,
                kernel="fir",
            )
1079
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1106
class SkipDownBlock2D(nn.Module):
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
1128
                ResnetBlock2D(
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
1144
            self.resnet_down = ResnetBlock2D(
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1155
                use_in_shortcut=True,
1156
1157
1158
                down=True,
                kernel="fir",
            )
1159
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Will Berman's avatar
Will Berman committed
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
class ResnetDownsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, temb)

            output_states += (hidden_states,)

        return hidden_states, output_states


class SimpleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_downsample=True,
    ):
        super().__init__()

        self.has_cross_attention = True

        resnets = []
        attentions = []

        self.attn_num_head_channels = attn_num_head_channels
        self.num_heads = out_channels // self.attn_num_head_channels

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
                CrossAttention(
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
                    dim_head=attn_num_head_channels,
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1327
                    processor=CrossAttnAddedKVProcessor(),
Will Berman's avatar
Will Berman committed
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        down=True,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1356
1357
1358
    def forward(
        self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
    ):
Will Berman's avatar
Will Berman committed
1359
        output_states = ()
1360
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
1361
1362
1363
1364
1365
1366
1367
1368

        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            hidden_states = resnet(hidden_states, temb)

            # attn
            hidden_states = attn(
                hidden_states,
1369
                encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
1370
                attention_mask=attention_mask,
1371
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
            )

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, temb)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
1385
class AttnUpBlock2D(nn.Module):
1386
1387
1388
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1389
1390
        prev_output_channel: int,
        out_channels: int,
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1408
1409
1410
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1411
            resnets.append(
1412
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1413
1414
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1426
                AttentionBlock(
Patrick von Platen's avatar
Patrick von Platen committed
1427
                    out_channels,
1428
1429
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
1430
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1431
                    norm_num_groups=resnet_groups,
1432
1433
1434
1435
1436
1437
1438
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1439
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
        else:
            self.upsamplers = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1460
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
1478
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1479
        use_linear_projection=False,
1480
        only_cross_attention=False,
1481
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
1482
1483
1484
1485
1486
    ):
        super().__init__()
        resnets = []
        attentions = []

1487
        self.has_cross_attention = True
1488
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
1489
1490
1491
1492
1493
1494

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
1495
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
1508
1509
1510
1511
1512
1513
1514
1515
1516
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1517
                        use_linear_projection=use_linear_projection,
1518
                        only_cross_attention=only_cross_attention,
1519
                        upcast_attention=upcast_attention,
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1532
1533
1534
1535
1536
1537
1538
1539
1540
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

1541
1542
1543
1544
1545
1546
1547
1548
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
1549
        cross_attention_kwargs=None,
1550
        upsample_size=None,
Will Berman's avatar
Will Berman committed
1551
        attention_mask=None,
1552
    ):
Will Berman's avatar
Will Berman committed
1553
        # TODO(Patrick, William) - attention mask is not used
Patrick von Platen's avatar
Patrick von Platen committed
1554
1555
1556
1557
1558
1559
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1560
1561
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1562
                def create_custom_forward(module, return_dict=None):
1563
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1564
1565
1566
1567
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1568
1569
1570
1571
1572

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
1573
1574
1575
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
1576
                    cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
1577
                )[0]
1578
1579
            else:
                hidden_states = resnet(hidden_states, temb)
1580
1581
1582
1583
1584
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample
Patrick von Platen's avatar
Patrick von Platen committed
1585
1586
1587

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1588
                hidden_states = upsampler(hidden_states, upsample_size)
Patrick von Platen's avatar
Patrick von Platen committed
1589
1590
1591
1592

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1593
class UpBlock2D(nn.Module):
1594
1595
1596
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1597
1598
        prev_output_channel: int,
        out_channels: int,
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1614
1615
1616
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1617
            resnets.append(
1618
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1619
1620
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1635
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1636
1637
1638
        else:
            self.upsamplers = None

1639
1640
        self.gradient_checkpointing = False

1641
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
1642
1643
1644
1645
1646
1647
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)
1659
1660
1661

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1662
                hidden_states = upsampler(hidden_states, upsample_size)
1663
1664

        return hidden_states
1665
1666


1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1689
                ResnetBlock2D(
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1745
                ResnetBlock2D(
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1759
                AttentionBlock(
1760
1761
1762
1763
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1764
                    norm_num_groups=resnet_groups,
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1788
class AttnSkipUpBlock2D(nn.Module):
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=np.sqrt(2.0),
        upsample_padding=1,
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1815
                ResnetBlock2D(
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions.append(
1831
            AttentionBlock(
1832
1833
1834
1835
1836
1837
1838
1839
1840
                out_channels,
                num_head_channels=attn_num_head_channels,
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1841
            self.resnet_up = ResnetBlock2D(
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1853
                use_in_shortcut=True,
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        hidden_states = self.attentions[0](hidden_states)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1896
class SkipUpBlock2D(nn.Module):
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1921
                ResnetBlock2D(
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1938
            self.resnet_up = ResnetBlock2D(
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1950
                use_in_shortcut=True,
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample
Will Berman's avatar
Will Berman committed
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136


class ResnetUpsampleBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, temb)

        return hidden_states


class SimpleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
        self.attn_num_head_channels = attn_num_head_channels

        self.num_heads = out_channels // self.attn_num_head_channels

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
                CrossAttention(
                    query_dim=out_channels,
                    cross_attention_dim=out_channels,
                    heads=self.num_heads,
                    dim_head=attn_num_head_channels,
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
2137
                    processor=CrossAttnAddedKVProcessor(),
Will Berman's avatar
Will Berman committed
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    ResnetBlock2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                        up=True,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
        upsample_size=None,
        attention_mask=None,
2174
        cross_attention_kwargs=None,
Will Berman's avatar
Will Berman committed
2175
    ):
2176
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
Will Berman's avatar
Will Berman committed
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
        for resnet, attn in zip(self.resnets, self.attentions):
            # resnet
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

            # attn
            hidden_states = attn(
                hidden_states,
2189
                encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
2190
                attention_mask=attention_mask,
2191
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
2192
2193
2194
2195
2196
2197
2198
            )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, temb)

        return hidden_states