test_pipelines.py 48.1 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import json
18
import os
19
import random
20
import shutil
21
import sys
22
23
import tempfile
import unittest
24
import unittest.mock as mock
25
26
27

import numpy as np
import PIL
28
import requests_mock
29
import safetensors.torch
30
31
32
import torch
from parameterized import parameterized
from PIL import Image
33
from requests.exceptions import HTTPError
34
35
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer

36
from diffusers import (
37
    AutoencoderKL,
38
39
40
41
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
42
    DiffusionPipeline,
43
44
45
46
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
47
    PNDMScheduler,
48
    StableDiffusionImg2ImgPipeline,
49
    StableDiffusionInpaintPipelineLegacy,
50
    StableDiffusionPipeline,
51
    UNet2DConditionModel,
52
    UNet2DModel,
53
    UniPCMultistepScheduler,
54
    logging,
55
)
56
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
57
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, is_flax_available, nightly, slow, torch_device
58
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, load_numpy, require_compel, require_torch_gpu
59
60
61
62
63


torch.backends.cuda.matmul.allow_tf32 = False


64
class DownloadTests(unittest.TestCase):
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    def test_one_request_upon_cached(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            download_requests = [r.method for r in m.request_history]
            assert download_requests.count("HEAD") == 16, "15 calls to files + send_telemetry"
            assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json"
            assert (
                len(download_requests) == 33
            ), "2 calls per file (15 files) + send_telemetry, model_info and model_index.json"

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
            assert cache_requests.count("HEAD") == 1, "send_telemetry is only HEAD"
            assert cache_requests.count("GET") == 1, "model info is only GET"
            assert (
                len(cache_requests) == 2
            ), "We should call only `model_info` to check for _commit hash and `send_telemetry`"

95
96
97
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
98
            tmpdirname = DiffusionPipeline.download(
99
100
101
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

102
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
103
104
105
106
107
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)
108
109
110
            # We need to never convert this tiny model to safetensors for this test to pass
            assert not any(f.endswith(".safetensors") for f in files)

111
112
113
114
115
116
117
118
119
120
121
    def test_returned_cached_folder(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        _, local_path = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, return_cached_folder=True
        )
        pipe_2 = StableDiffusionPipeline.from_pretrained(local_path)

        pipe = pipe.to(torch_device)
122
        pipe_2 = pipe_2.to(torch_device)
123

124
        generator = torch.manual_seed(0)
125
126
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

127
        generator = torch.manual_seed(0)
128
129
130
131
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        assert np.max(np.abs(out - out_2)) < 1e-3

132
133
134
    def test_download_safetensors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
135
            tmpdirname = DiffusionPipeline.download(
136
137
138
139
140
                "hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
                safety_checker=None,
                cache_dir=tmpdirname,
            )

141
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
142
143
144
145
146
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".bin") for f in files)
147

148
149
150
151
152
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
153
        pipe = pipe.to(torch_device)
154
        generator = torch.manual_seed(0)
155
156
157
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
158
        pipe_2 = pipe_2.to(torch_device)
159
        generator = torch.manual_seed(0)
160
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
161
162
163
164
165
166
167
168

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
169
        pipe = pipe.to(torch_device)
170
        generator = torch.manual_seed(0)
171
172
173
174
175
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
176
            pipe_2 = pipe_2.to(torch_device)
177

178
            generator = torch.manual_seed(0)
179
180

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
181
182
183
184
185
186

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
187
        pipe = pipe.to(torch_device)
188
189

        generator = torch.manual_seed(0)
190
191
192
193
194
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
195
            pipe_2 = pipe_2.to(torch_device)
196

197
            generator = torch.manual_seed(0)
198
199

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
200
201
202

        assert np.max(np.abs(out - out_2)) < 1e-3

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            pipe = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, local_files_only=True
            )
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_download_from_variant_folder(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail

            other_format = ".bin" if safe_avail else ".safetensors"
            with tempfile.TemporaryDirectory() as tmpdirname:
238
                tmpdirname = StableDiffusionPipeline.download(
239
240
                    "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname
                )
241
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                assert not any(f.endswith(other_format) for f in files)
                # no variants
                assert not any(len(f.split(".")) == 3 for f in files)

        diffusers.utils.import_utils._safetensors_available = True

    def test_download_variant_all(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail

            other_format = ".bin" if safe_avail else ".safetensors"
            this_format = ".safetensors" if safe_avail else ".bin"
            variant = "fp16"

            with tempfile.TemporaryDirectory() as tmpdirname:
264
                tmpdirname = StableDiffusionPipeline.download(
265
266
                    "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant
                )
267
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a non-variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # unet, vae, text_encoder, safety_checker
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
                # all checkpoints should have variant ending
                assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
                assert not any(f.endswith(other_format) for f in files)

        diffusers.utils.import_utils._safetensors_available = True

    def test_download_variant_partly(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail

            other_format = ".bin" if safe_avail else ".safetensors"
            this_format = ".safetensors" if safe_avail else ".bin"
            variant = "no_ema"

            with tempfile.TemporaryDirectory() as tmpdirname:
292
                tmpdirname = StableDiffusionPipeline.download(
293
294
                    "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant
                )
295
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
296
297
                files = [item for sublist in all_root_files for item in sublist]

298
                unet_files = os.listdir(os.path.join(tmpdirname, "unet"))
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

                # Some of the downloaded files should be a non-variant file, check:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # only unet has "no_ema" variant
                assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
                # vae, safety_checker and text_encoder should have no variant
                assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
                assert not any(f.endswith(other_format) for f in files)

        diffusers.utils.import_utils._safetensors_available = True

    def test_download_broken_variant(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail
            # text encoder is missing no variant and "no_ema" variant weights, so the following can't work
            for variant in [None, "no_ema"]:
                with self.assertRaises(OSError) as error_context:
                    with tempfile.TemporaryDirectory() as tmpdirname:
321
                        tmpdirname = StableDiffusionPipeline.from_pretrained(
322
323
324
325
326
327
328
329
330
                            "hf-internal-testing/stable-diffusion-broken-variants",
                            cache_dir=tmpdirname,
                            variant=variant,
                        )

                assert "Error no file name" in str(error_context.exception)

            # text encoder has fp16 variants so we can load it
            with tempfile.TemporaryDirectory() as tmpdirname:
331
                tmpdirname = StableDiffusionPipeline.download(
332
333
334
                    "hf-internal-testing/stable-diffusion-broken-variants", cache_dir=tmpdirname, variant="fp16"
                )

335
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
336
337
338
339
340
341
342
343
344
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a non-variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # only unet has "no_ema" variant

        diffusers.utils.import_utils._safetensors_available = True

345

Patrick von Platen's avatar
Patrick von Platen committed
346
347
348
349
350
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
351
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
352
353
354
355
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    def test_load_custom_github(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
        )

        # make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
        with torch.no_grad():
            output = pipeline()

        assert output.numel() == output.sum()

        # hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
        # Could in the future work with hashes instead.
        del sys.modules["diffusers_modules.git.one_step_unet"]

        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
        )
        with torch.no_grad():
            output = pipeline()

        assert output.numel() != output.sum()

        assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"

Patrick von Platen's avatar
Patrick von Platen committed
381
382
383
384
    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
385
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
386
387
388
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
389

Patrick von Platen's avatar
Patrick von Platen committed
390
391
392
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

393
    def test_local_custom_pipeline_repo(self):
Patrick von Platen's avatar
Patrick von Platen committed
394
395
396
397
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
398
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
399
400
401
402
403
404
405
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

406
407
408
409
410
411
412
413
414
415
416
417
418
419
    def test_local_custom_pipeline_file(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

Patrick von Platen's avatar
Patrick von Platen committed
420
    @slow
421
    @require_torch_gpu
422
    def test_download_from_git(self):
Patrick von Platen's avatar
Patrick von Platen committed
423
424
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

425
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
426
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
427
428
429
430
431
432

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
433
            torch_dtype=torch.float16,
Patrick von Platen's avatar
Patrick von Platen committed
434
        )
435
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
436
437
438
439
440
441
442
443
444
445
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


446
class PipelineFastTests(unittest.TestCase):
447
448
449
450
451
452
453
454
455
456
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

        import diffusers

        diffusers.utils.import_utils._safetensors_available = True

457
458
459
460
461
462
463
464
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

465
    def dummy_uncond_unet(self, sample_size=32):
466
467
468
469
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
470
            sample_size=sample_size,
471
472
473
474
475
476
477
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

478
    def dummy_cond_unet(self, sample_size=32):
479
480
481
482
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
483
            sample_size=sample_size,
484
485
486
487
488
489
490
491
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

492
    @property
493
494
495
496
497
498
499
500
501
502
503
504
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

505
    @property
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

521
    @property
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

536
537
538
    @parameterized.expand(
        [
            [DDIMScheduler, DDIMPipeline, 32],
539
            [DDPMScheduler, DDPMPipeline, 32],
540
            [DDIMScheduler, DDIMPipeline, (32, 64)],
541
            [DDPMScheduler, DDPMPipeline, (64, 32)],
542
543
544
545
546
547
548
        ]
    )
    def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
        unet = self.dummy_uncond_unet(sample_size)
        scheduler = scheduler_fn()
        pipeline = pipeline_fn(unet, scheduler).to(torch_device)

549
        generator = torch.manual_seed(0)
550
551
552
553
554
555
556
557
558
        out_image = pipeline(
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images
        sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
        assert out_image.shape == (1, *sample_size, 3)

    def test_stable_diffusion_components(self):
559
        """Test that components property works correctly"""
560
        unet = self.dummy_cond_unet()
561
        scheduler = PNDMScheduler(skip_prk_steps=True)
562
563
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
564
565
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

566
        image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
567
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
568
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
569
570

        # make sure here that pndm scheduler skips prk
571
        inpaint = StableDiffusionInpaintPipelineLegacy(
572
573
574
575
576
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
577
            safety_checker=None,
578
            feature_extractor=self.dummy_extractor,
579
580
581
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
582
583

        prompt = "A painting of a squirrel eating a burger"
584

585
        generator = torch.manual_seed(0)
586
        image_inpaint = inpaint(
587
588
589
590
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
591
            image=init_image,
592
593
594
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
595
596
597
598
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
599
            image=init_image,
600
601
602
        ).images
        image_text2img = text2img(
            [prompt],
603
604
605
            generator=generator,
            num_inference_steps=2,
            output_type="np",
606
        ).images
607

608
609
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
610
        assert image_text2img.shape == (1, 64, 64, 3)
611

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    @require_torch_gpu
    def test_pipe_false_offload_warn(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.enable_model_cpu_offload()

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        with CaptureLogger(logger) as cap_logger:
            sd.to("cuda")

        assert "It is strongly recommended against doing so" in str(cap_logger)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

648
    def test_set_scheduler(self):
649
        unet = self.dummy_cond_unet()
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDIMScheduler)
        sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDPMScheduler)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, PNDMScheduler)
        sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, LMSDiscreteScheduler)
        sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerDiscreteScheduler)
        sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
        sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)

    def test_set_scheduler_consistency(self):
681
        unet = self.dummy_cond_unet()
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        pndm_config = sd.scheduler.config
        sd.scheduler = DDPMScheduler.from_config(pndm_config)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        pndm_config_2 = sd.scheduler.config
        pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}

        assert dict(pndm_config) == dict(pndm_config_2)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=ddim,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        ddim_config = sd.scheduler.config
        sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        ddim_config_2 = sd.scheduler.config
        ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}

        assert dict(ddim_config) == dict(ddim_config_2)

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
    def test_save_safe_serialization(self):
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipeline.save_pretrained(tmpdirname, safe_serialization=True)

            # Validate that the VAE safetensor exists and are of the correct format
            vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(vae_path), f"Could not find {vae_path}"
            _ = safetensors.torch.load_file(vae_path)

            # Validate that the UNet safetensor exists and are of the correct format
            unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(unet_path), f"Could not find {unet_path}"
            _ = safetensors.torch.load_file(unet_path)

            # Validate that the text encoder safetensor exists and are of the correct format
            text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
741
742
            assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
            _ = safetensors.torch.load_file(text_encoder_path)
743
744
745
746
747
748
749
750

            pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
            assert pipeline.unet is not None
            assert pipeline.vae is not None
            assert pipeline.text_encoder is not None
            assert pipeline.scheduler is not None
            assert pipeline.feature_extractor is not None

751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    def test_no_pytorch_download_when_doing_safetensors(self):
        # by default we don't download
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors exists
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does not
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

    def test_no_safetensors_download_when_doing_pytorch(self):
        # mock diffusers safetensors not available
        import diffusers

        diffusers.utils.import_utils._safetensors_available = False

        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors does not exists
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

        diffusers.utils.import_utils._safetensors_available = True

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    def test_optional_components(self):
        unet = self.dummy_cond_unet()
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        orig_sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=unet,
            feature_extractor=self.dummy_extractor,
        )
        sd = orig_sd

        assert sd.config.requires_safety_checker is True

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that passing None works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
            )

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that loading previous None works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            orig_sd.save_pretrained(tmpdirname)

            # Test that loading without any directory works
            shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                config["safety_checker"] = [None, None]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            # Test that loading from deleted model index works
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                del config["safety_checker"]
                del config["feature_extractor"]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor != (None, None)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname,
                feature_extractor=self.dummy_extractor,
                safety_checker=unet,
                requires_safety_checker=[True, True],
            )

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

899

900
@slow
901
@require_torch_gpu
902
class PipelineSlowTests(unittest.TestCase):
903
904
905
906
907
908
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

909
910
911
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
912
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

930
931
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
932
        logger = logging.get_logger("diffusers.pipelines")
933
934
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
935
                DiffusionPipeline.from_pretrained(
936
937
938
939
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
940
                )
941

942
        assert (
943
944
            cap_logger.out.strip().split("\n")[-1]
            == "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
945
        )
946

947
    def test_from_save_pretrained(self):
948
949
950
951
952
953
954
955
956
957
958
959
960
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
961
        ddpm.to(torch_device)
962
        ddpm.set_progress_bar_config(disable=None)
963
964
965

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
966
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
967
            new_ddpm.to(torch_device)
968

969
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
970
        image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
971

972
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
973
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
974
975
976
977
978
979

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

980
        scheduler = DDPMScheduler(num_train_timesteps=10)
981

982
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
983
        ddpm = ddpm.to(torch_device)
984
        ddpm.set_progress_bar_config(disable=None)
985

986
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
987
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
988
        ddpm_from_hub.set_progress_bar_config(disable=None)
989

990
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
991
        image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
992

993
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
994
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
995
996
997
998
999
1000

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

1001
1002
        scheduler = DDPMScheduler(num_train_timesteps=10)

1003
        # pass unet into DiffusionPipeline
1004
1005
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
1006
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
1007
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1008

1009
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
1010
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
1011
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1012

1013
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1014
        image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="numpy").images
1015

1016
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1017
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
1018
1019
1020
1021
1022
1023

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

1024
        scheduler = DDIMScheduler.from_pretrained(model_path)
Patrick von Platen's avatar
Patrick von Platen committed
1025
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
1026
        pipe.to(torch_device)
1027
        pipe.set_progress_bar_config(disable=None)
1028

1029
        images = pipe(output_type="numpy").images
1030
1031
1032
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

1033
        images = pipe(output_type="pil", num_inference_steps=4).images
1034
1035
1036
1037
1038
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
1039
        images = pipe(num_inference_steps=4).images
1040
1041
1042
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
    def test_from_flax_from_pt(self):
        pipe_pt = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe_pt.to(torch_device)

        if not is_flax_available():
            raise ImportError("Make sure flax is installed.")

        from diffusers import FlaxStableDiffusionPipeline

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_pt.save_pretrained(tmpdirname)

            pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
                tmpdirname, safety_checker=None, from_pt=True
            )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_flax.save_pretrained(tmpdirname, params=params)
            pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
            pipe_pt_2.to(torch_device)

        prompt = "Hello"

        generator = torch.manual_seed(0)
        image_0 = pipe_pt(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        generator = torch.manual_seed(0)
        image_1 = pipe_pt_2(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
    @require_compel
    def test_weighted_prompts_compel(self):
        from compel import Compel

        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()
        pipe.enable_attention_slicing()

        compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)

        prompt = "a red cat playing with a ball{}"

        prompts = [prompt.format(s) for s in ["", "++", "--"]]

        prompt_embeds = compel(prompts)

        generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])]

        images = pipe(
            prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="numpy"
        ).images

        for i, image in enumerate(images):
            expected_image = load_numpy(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                f"/compel/forest_{i}.npy"
            )

            assert np.abs(image - expected_image).max() < 1e-3

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126

@nightly
@require_torch_gpu
class PipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1127
1128
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
1129
        model_id = "google/ddpm-cifar10-32"
1130

1131
        unet = UNet2DModel.from_pretrained(model_id)
1132
1133
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1134

1135
1136
1137
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
1138

1139
1140
1141
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
1142

1143
1144
        generator = torch.Generator(device=torch_device).manual_seed(seed)
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
1145

1146
        generator = torch.Generator(device=torch_device).manual_seed(seed)
1147
        ddim_images = ddim(
1148
            batch_size=2,
1149
1150
1151
1152
1153
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
1154
        ).images
1155

1156
1157
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1