test_pipelines.py 34.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import json
18
import os
19
import random
20
import shutil
21
22
23
24
25
26
27
import tempfile
import unittest

import numpy as np
import torch

import PIL
28
import safetensors.torch
29
from diffusers import (
30
    AutoencoderKL,
31
32
33
34
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
35
36
37
38
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
39
    PNDMScheduler,
40
    StableDiffusionImg2ImgPipeline,
41
    StableDiffusionInpaintPipelineLegacy,
42
    StableDiffusionPipeline,
43
    UNet2DConditionModel,
44
    UNet2DModel,
45
    logging,
46
47
)
from diffusers.pipeline_utils import DiffusionPipeline
48
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
49
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
50
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, require_torch_gpu
51
from parameterized import parameterized
52
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
53
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
54
55
56
57
58


torch.backends.cuda.matmul.allow_tf32 = False


59
60
61
62
63
64
65
66
67
68
69
70
71
72
class DownloadTests(unittest.TestCase):
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            _ = DiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)
73
74
75
            # We need to never convert this tiny model to safetensors for this test to pass
            assert not any(f.endswith(".safetensors") for f in files)

76
77
78
79
80
81
82
83
84
85
86
    def test_returned_cached_folder(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        _, local_path = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, return_cached_folder=True
        )
        pipe_2 = StableDiffusionPipeline.from_pretrained(local_path)

        pipe = pipe.to(torch_device)
87
        pipe_2 = pipe_2.to(torch_device)
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        assert np.max(np.abs(out - out_2)) < 1e-3

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    def test_download_safetensors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            _ = DiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
                safety_checker=None,
                cache_dir=tmpdirname,
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".bin") for f in files)
120

121
122
123
124
125
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
126
127
128
129
130
131
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
132
133
134
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
135
        pipe_2 = pipe_2.to(torch_device)
136
137
138
139
140
141
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
142
143
144
145
146
147
148
149

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
150
151
152
153
154
155
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
156
157
158
159
160
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
161
            pipe_2 = pipe_2.to(torch_device)
162
163
164
165
166
167
168
169

            if torch_device == "mps":
                # device type MPS is not supported for torch.Generator() api.
                generator = torch.manual_seed(0)
            else:
                generator = torch.Generator(device=torch_device).manual_seed(0)

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
170
171
172
173
174
175

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
176
177
178
179
180
181
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
182
183
184
185
186
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
187
            pipe_2 = pipe_2.to(torch_device)
188
189
190
191
192
193
194
195

            if torch_device == "mps":
                # device type MPS is not supported for torch.Generator() api.
                generator = torch.manual_seed(0)
            else:
                generator = torch.Generator(device=torch_device).manual_seed(0)

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
196
197
198

        assert np.max(np.abs(out - out_2)) < 1e-3

199

Patrick von Platen's avatar
Patrick von Platen committed
200
201
202
203
204
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
205
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
209
210
211
212
213
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
214
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
218

Patrick von Platen's avatar
Patrick von Platen committed
219
220
221
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

222
    def test_local_custom_pipeline_repo(self):
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225
226
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
227
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
228
229
230
231
232
233
234
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

235
236
237
238
239
240
241
242
243
244
245
246
247
248
    def test_local_custom_pipeline_file(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

Patrick von Platen's avatar
Patrick von Platen committed
249
    @slow
250
    @require_torch_gpu
Patrick von Platen's avatar
Patrick von Platen committed
251
252
253
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

254
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
255
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
259
260
261

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
262
263
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
264
        )
265
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
266
267
268
269
270
271
272
273
274
275
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


276
277
278
279
280
281
282
283
284
class PipelineFastTests(unittest.TestCase):
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

285
    def dummy_uncond_unet(self, sample_size=32):
286
287
288
289
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
290
            sample_size=sample_size,
291
292
293
294
295
296
297
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

298
    def dummy_cond_unet(self, sample_size=32):
299
300
301
302
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
303
            sample_size=sample_size,
304
305
306
307
308
309
310
311
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

312
    @property
313
314
315
316
317
318
319
320
321
322
323
324
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

325
    @property
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

341
    @property
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

356
357
358
    @parameterized.expand(
        [
            [DDIMScheduler, DDIMPipeline, 32],
359
            [DDPMScheduler, DDPMPipeline, 32],
360
            [DDIMScheduler, DDIMPipeline, (32, 64)],
361
            [DDPMScheduler, DDPMPipeline, (64, 32)],
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        ]
    )
    def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
        unet = self.dummy_uncond_unet(sample_size)
        scheduler = scheduler_fn()
        pipeline = pipeline_fn(unet, scheduler).to(torch_device)

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        out_image = pipeline(
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images
        sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
        assert out_image.shape == (1, *sample_size, 3)

    def test_stable_diffusion_components(self):
384
        """Test that components property works correctly"""
385
        unet = self.dummy_cond_unet()
386
        scheduler = PNDMScheduler(skip_prk_steps=True)
387
388
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
389
390
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

391
        image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
392
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
393
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
394
395

        # make sure here that pndm scheduler skips prk
396
        inpaint = StableDiffusionInpaintPipelineLegacy(
397
398
399
400
401
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
402
            safety_checker=None,
403
            feature_extractor=self.dummy_extractor,
404
405
406
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
407
408

        prompt = "A painting of a squirrel eating a burger"
409
410
411
412
413
414
415

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

416
        image_inpaint = inpaint(
417
418
419
420
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
421
            image=init_image,
422
423
424
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
425
426
427
428
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
429
            image=init_image,
430
431
432
        ).images
        image_text2img = text2img(
            [prompt],
433
434
435
            generator=generator,
            num_inference_steps=2,
            output_type="np",
436
        ).images
437

438
439
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
440
        assert image_text2img.shape == (1, 64, 64, 3)
441

442
    def test_set_scheduler(self):
443
        unet = self.dummy_cond_unet()
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDIMScheduler)
        sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDPMScheduler)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, PNDMScheduler)
        sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, LMSDiscreteScheduler)
        sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerDiscreteScheduler)
        sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
        sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)

    def test_set_scheduler_consistency(self):
475
        unet = self.dummy_cond_unet()
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        pndm_config = sd.scheduler.config
        sd.scheduler = DDPMScheduler.from_config(pndm_config)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        pndm_config_2 = sd.scheduler.config
        pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}

        assert dict(pndm_config) == dict(pndm_config_2)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=ddim,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        ddim_config = sd.scheduler.config
        sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        ddim_config_2 = sd.scheduler.config
        ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}

        assert dict(ddim_config) == dict(ddim_config_2)

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    def test_save_safe_serialization(self):
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipeline.save_pretrained(tmpdirname, safe_serialization=True)

            # Validate that the VAE safetensor exists and are of the correct format
            vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(vae_path), f"Could not find {vae_path}"
            _ = safetensors.torch.load_file(vae_path)

            # Validate that the UNet safetensor exists and are of the correct format
            unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(unet_path), f"Could not find {unet_path}"
            _ = safetensors.torch.load_file(unet_path)

            # Validate that the text encoder safetensor exists and are of the correct format
            text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
535
536
            assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
            _ = safetensors.torch.load_file(text_encoder_path)
537
538
539
540
541
542
543
544

            pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
            assert pipeline.unet is not None
            assert pipeline.vae is not None
            assert pipeline.text_encoder is not None
            assert pipeline.scheduler is not None
            assert pipeline.feature_extractor is not None

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    def test_optional_components(self):
        unet = self.dummy_cond_unet()
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        orig_sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=unet,
            feature_extractor=self.dummy_extractor,
        )
        sd = orig_sd

        assert sd.config.requires_safety_checker is True

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that passing None works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
            )

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that loading previous None works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            orig_sd.save_pretrained(tmpdirname)

            # Test that loading without any directory works
            shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                config["safety_checker"] = [None, None]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            # Test that loading from deleted model index works
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                del config["safety_checker"]
                del config["feature_extractor"]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor != (None, None)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname,
                feature_extractor=self.dummy_extractor,
                safety_checker=unet,
                requires_safety_checker=[True, True],
            )

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

649

650
651
@slow
class PipelineSlowTests(unittest.TestCase):
652
653
654
655
656
657
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

658
659
660
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
661
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

679
680
681
682
683
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
684
                DiffusionPipeline.from_pretrained(
685
686
687
688
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
689
                )
690

691
692
693
694
        assert (
            cap_logger.out
            == "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored.\n"
        )
695

696
    def test_from_save_pretrained(self):
697
698
699
700
701
702
703
704
705
706
707
708
709
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
710
        ddpm.to(torch_device)
711
        ddpm.set_progress_bar_config(disable=None)
712
713
714

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
715
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
716
            new_ddpm.to(torch_device)
717

718
        generator = torch.Generator(device=torch_device).manual_seed(0)
719
        image = ddpm(generator=generator, output_type="numpy").images
720

721
        generator = generator.manual_seed(0)
722
        new_image = new_ddpm(generator=generator, output_type="numpy").images
723
724
725
726
727
728

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

729
        scheduler = DDPMScheduler(num_train_timesteps=10)
730

731
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
732
        ddpm = ddpm.to(torch_device)
733
        ddpm.set_progress_bar_config(disable=None)
734

735
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
736
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
737
        ddpm_from_hub.set_progress_bar_config(disable=None)
738

739
        generator = torch.Generator(device=torch_device).manual_seed(0)
740
        image = ddpm(generator=generator, output_type="numpy").images
741

742
        generator = generator.manual_seed(0)
743
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
744
745
746
747
748
749

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

750
751
        scheduler = DDPMScheduler(num_train_timesteps=10)

752
        # pass unet into DiffusionPipeline
753
754
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
755
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
756
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
757

758
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
759
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
760
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
761

762
        generator = torch.Generator(device=torch_device).manual_seed(0)
763
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
764

765
        generator = generator.manual_seed(0)
766
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
767
768
769
770
771
772

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

773
        scheduler = DDIMScheduler.from_pretrained(model_path)
Patrick von Platen's avatar
Patrick von Platen committed
774
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
775
        pipe.to(torch_device)
776
        pipe.set_progress_bar_config(disable=None)
777

778
        generator = torch.Generator(device=torch_device).manual_seed(0)
779
        images = pipe(generator=generator, output_type="numpy").images
780
781
782
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

Patrick von Platen's avatar
Patrick von Platen committed
783
        images = pipe(generator=generator, output_type="pil", num_inference_steps=4).images
784
785
786
787
788
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
Patrick von Platen's avatar
Patrick von Platen committed
789
        images = pipe(generator=generator, num_inference_steps=4).images
790
791
792
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

793
794
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
795
        model_id = "google/ddpm-cifar10-32"
796

797
        unet = UNet2DModel.from_pretrained(model_id)
798
799
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
800

801
802
803
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
804

805
806
807
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
808

809
810
        generator = torch.Generator(device=torch_device).manual_seed(seed)
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
811

812
        generator = torch.Generator(device=torch_device).manual_seed(seed)
813
        ddim_images = ddim(
814
            batch_size=2,
815
816
817
818
819
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
820
        ).images
821

822
823
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1