test_pipelines.py 31.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import json
18
import os
19
import random
20
import shutil
21
22
import tempfile
import unittest
23
from functools import partial
24
25
26
27
28
29

import numpy as np
import torch

import PIL
from diffusers import (
30
    AutoencoderKL,
31
32
33
34
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
35
36
37
38
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
39
    PNDMScheduler,
40
    StableDiffusionImg2ImgPipeline,
41
    StableDiffusionInpaintPipelineLegacy,
42
    StableDiffusionPipeline,
43
    UNet2DConditionModel,
44
    UNet2DModel,
45
    logging,
46
47
)
from diffusers.pipeline_utils import DiffusionPipeline
48
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
49
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
50
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, require_torch_gpu
51
from parameterized import parameterized
52
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
53
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
54
55
56
57
58


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
59
60
61
62
63
64
65
66
67
68
69
70
71
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
72
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
73
74
75
76
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
77
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
78
79
80
81
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
class DownloadTests(unittest.TestCase):
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            _ = DiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)

97
98
99
100
101
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
102
103
104
105
106
107
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
108
109
110
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
111
        pipe_2 = pipe_2.to(torch_device)
112
113
114
115
116
117
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
118
119
120
121
122
123
124
125

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
126
127
128
129
130
131
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
132
133
134
135
136
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
137
            pipe_2 = pipe_2.to(torch_device)
138
139
140
141
142
143
144
145

            if torch_device == "mps":
                # device type MPS is not supported for torch.Generator() api.
                generator = torch.manual_seed(0)
            else:
                generator = torch.Generator(device=torch_device).manual_seed(0)

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
146
147
148
149
150
151

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
152
153
154
155
156
157
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
158
159
160
161
162
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
163
            pipe_2 = pipe_2.to(torch_device)
164
165
166
167
168
169
170
171

            if torch_device == "mps":
                # device type MPS is not supported for torch.Generator() api.
                generator = torch.manual_seed(0)
            else:
                generator = torch.Generator(device=torch_device).manual_seed(0)

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
172
173
174

        assert np.max(np.abs(out - out_2)) < 1e-3

175

Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
179
180
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
181
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
182
183
184
185
186
187
188
189
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
190
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
191
192
193
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
194

Patrick von Platen's avatar
Patrick von Platen committed
195
196
197
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

198
    def test_local_custom_pipeline_repo(self):
Patrick von Platen's avatar
Patrick von Platen committed
199
200
201
202
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
203
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
204
205
206
207
208
209
210
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

211
212
213
214
215
216
217
218
219
220
221
222
223
224
    def test_local_custom_pipeline_file(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

Patrick von Platen's avatar
Patrick von Platen committed
225
    @slow
226
    @require_torch_gpu
Patrick von Platen's avatar
Patrick von Platen committed
227
228
229
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

230
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
231
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
232
233
234
235
236
237

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
238
239
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
240
        )
241
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
245
246
247
248
249
250
251
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


252
253
254
255
256
257
258
259
260
class PipelineFastTests(unittest.TestCase):
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

261
    def dummy_uncond_unet(self, sample_size=32):
262
263
264
265
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
266
            sample_size=sample_size,
267
268
269
270
271
272
273
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

274
    def dummy_cond_unet(self, sample_size=32):
275
276
277
278
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
279
            sample_size=sample_size,
280
281
282
283
284
285
286
287
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

288
    @property
289
290
291
292
293
294
295
296
297
298
299
300
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

301
    @property
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

317
    @property
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    @parameterized.expand(
        [
            [DDIMScheduler, DDIMPipeline, 32],
            [partial(DDPMScheduler, predict_epsilon=True), DDPMPipeline, 32],
            [DDIMScheduler, DDIMPipeline, (32, 64)],
            [partial(DDPMScheduler, predict_epsilon=True), DDPMPipeline, (64, 32)],
        ]
    )
    def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
        unet = self.dummy_uncond_unet(sample_size)
        # DDIM doesn't take `predict_epsilon`, and DDPM requires it -- so using partial in parameterized decorator
        scheduler = scheduler_fn()
        pipeline = pipeline_fn(unet, scheduler).to(torch_device)

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        out_image = pipeline(
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images
        sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
        assert out_image.shape == (1, *sample_size, 3)

    def test_stable_diffusion_components(self):
361
        """Test that components property works correctly"""
362
        unet = self.dummy_cond_unet()
363
        scheduler = PNDMScheduler(skip_prk_steps=True)
364
365
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
366
367
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

368
        image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
369
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
370
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
371
372

        # make sure here that pndm scheduler skips prk
373
        inpaint = StableDiffusionInpaintPipelineLegacy(
374
375
376
377
378
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
379
            safety_checker=None,
380
            feature_extractor=self.dummy_extractor,
381
382
383
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
384
385

        prompt = "A painting of a squirrel eating a burger"
386
387
388
389
390
391
392

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

393
        image_inpaint = inpaint(
394
395
396
397
398
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
399
400
401
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
402
403
404
405
406
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
407
408
409
        ).images
        image_text2img = text2img(
            [prompt],
410
411
412
            generator=generator,
            num_inference_steps=2,
            output_type="np",
413
        ).images
414

415
416
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
417
        assert image_text2img.shape == (1, 64, 64, 3)
418

419
    def test_set_scheduler(self):
420
        unet = self.dummy_cond_unet()
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDIMScheduler)
        sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDPMScheduler)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, PNDMScheduler)
        sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, LMSDiscreteScheduler)
        sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerDiscreteScheduler)
        sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
        sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)

    def test_set_scheduler_consistency(self):
452
        unet = self.dummy_cond_unet()
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        pndm_config = sd.scheduler.config
        sd.scheduler = DDPMScheduler.from_config(pndm_config)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        pndm_config_2 = sd.scheduler.config
        pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}

        assert dict(pndm_config) == dict(pndm_config_2)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=ddim,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        ddim_config = sd.scheduler.config
        sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        ddim_config_2 = sd.scheduler.config
        ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}

        assert dict(ddim_config) == dict(ddim_config_2)

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    def test_optional_components(self):
        unet = self.dummy_cond_unet()
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        orig_sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=unet,
            feature_extractor=self.dummy_extractor,
        )
        sd = orig_sd

        assert sd.config.requires_safety_checker is True

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that passing None works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
            )

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that loading previous None works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            orig_sd.save_pretrained(tmpdirname)

            # Test that loading without any directory works
            shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                config["safety_checker"] = [None, None]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            # Test that loading from deleted model index works
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                del config["safety_checker"]
                del config["feature_extractor"]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor != (None, None)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname,
                feature_extractor=self.dummy_extractor,
                safety_checker=unet,
                requires_safety_checker=[True, True],
            )

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

599

600
601
@slow
class PipelineSlowTests(unittest.TestCase):
602
603
604
605
606
607
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

608
609
610
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
611
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

629
630
631
632
633
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
634
                DiffusionPipeline.from_pretrained(
635
636
637
638
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
639
                )
640
641
642

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

643
644
645
646
647
648
649
650
651
652
653
654
655
656
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
657
        ddpm.to(torch_device)
658
        ddpm.set_progress_bar_config(disable=None)
659
660
661

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
662
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
663
            new_ddpm.to(torch_device)
664

665
        generator = torch.Generator(device=torch_device).manual_seed(0)
666
        image = ddpm(generator=generator, output_type="numpy").images
667

668
        generator = generator.manual_seed(0)
669
        new_image = new_ddpm(generator=generator, output_type="numpy").images
670
671
672
673
674
675

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

676
        scheduler = DDPMScheduler(num_train_timesteps=10)
677

678
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
679
        ddpm = ddpm.to(torch_device)
680
        ddpm.set_progress_bar_config(disable=None)
681

682
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
683
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
684
        ddpm_from_hub.set_progress_bar_config(disable=None)
685

686
        generator = torch.Generator(device=torch_device).manual_seed(0)
687
        image = ddpm(generator=generator, output_type="numpy").images
688

689
        generator = generator.manual_seed(0)
690
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
691
692
693
694
695
696

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

697
698
        scheduler = DDPMScheduler(num_train_timesteps=10)

699
        # pass unet into DiffusionPipeline
700
701
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
702
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
703
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
704

705
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
706
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
707
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
708

709
        generator = torch.Generator(device=torch_device).manual_seed(0)
710
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
711

712
        generator = generator.manual_seed(0)
713
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
714
715
716
717
718
719

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

720
        scheduler = DDIMScheduler.from_pretrained(model_path)
Patrick von Platen's avatar
Patrick von Platen committed
721
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
722
        pipe.to(torch_device)
723
        pipe.set_progress_bar_config(disable=None)
724

725
        generator = torch.Generator(device=torch_device).manual_seed(0)
726
        images = pipe(generator=generator, output_type="numpy").images
727
728
729
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

Patrick von Platen's avatar
Patrick von Platen committed
730
        images = pipe(generator=generator, output_type="pil", num_inference_steps=4).images
731
732
733
734
735
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
Patrick von Platen's avatar
Patrick von Platen committed
736
        images = pipe(generator=generator, num_inference_steps=4).images
737
738
739
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

740
741
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
742
        model_id = "google/ddpm-cifar10-32"
743

744
        unet = UNet2DModel.from_pretrained(model_id)
745
746
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
747

748
749
750
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
751

752
753
754
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
755

756
757
        generator = torch.Generator(device=torch_device).manual_seed(seed)
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
758

759
        generator = torch.Generator(device=torch_device).manual_seed(seed)
760
        ddim_images = ddim(
761
            batch_size=2,
762
763
764
765
766
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
767
        ).images
768

769
770
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1