test_pipelines.py 18.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
20
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    PNDMScheduler,
33
    StableDiffusionImg2ImgPipeline,
34
    StableDiffusionInpaintPipelineLegacy,
35
    StableDiffusionPipeline,
36
    UNet2DConditionModel,
37
    UNet2DModel,
38
    VQModel,
39
    logging,
40
41
)
from diffusers.pipeline_utils import DiffusionPipeline
42
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
43
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
44
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir
45
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
46
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
47
48
49
50
51


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
52
53
54
55
56
57
58
59
60
61
62
63
64
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
65
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
66
67
68
69
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
70
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
71
72
73
74
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
107
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

111
112
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id, device_map="auto")
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16, device_map="auto")
Patrick von Platen's avatar
Patrick von Platen committed
113
114
115
116
117
118

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
119
120
            torch_dtype=torch.float16,
            revision="fp16",
121
            device_map="auto",
Patrick von Platen's avatar
Patrick von Platen committed
122
        )
123
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
128
129
130
131
132
133
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
class PipelineFastTests(unittest.TestCase):
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

245
246
    def test_components(self):
        """Test that components property works correctly"""
247
        unet = self.dummy_cond_unet
248
        scheduler = PNDMScheduler(skip_prk_steps=True)
249
250
251
252
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

253
254
255
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
256
257

        # make sure here that pndm scheduler skips prk
258
        inpaint = StableDiffusionInpaintPipelineLegacy(
259
260
261
262
263
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
264
            safety_checker=None,
265
            feature_extractor=self.dummy_extractor,
266
267
268
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
269
270

        prompt = "A painting of a squirrel eating a burger"
271
272
273
274
275
276
277

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

278
        image_inpaint = inpaint(
279
280
281
282
283
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
284
285
286
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
287
288
289
290
291
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
292
293
294
        ).images
        image_text2img = text2img(
            [prompt],
295
296
297
            generator=generator,
            num_inference_steps=2,
            output_type="np",
298
        ).images
299

300
301
302
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
        assert image_text2img.shape == (1, 128, 128, 3)
303

304

305
306
@slow
class PipelineSlowTests(unittest.TestCase):
307
308
309
310
311
312
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

313
314
315
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
316
317
318
            _ = DiffusionPipeline.from_pretrained(
                model_id, cache_dir=tmpdirname, force_download=True, device_map="auto"
            )
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

336
337
338
339
340
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
341
342
343
                DiffusionPipeline.from_pretrained(
                    model_id, not_used=True, cache_dir=tmpdirname, force_download=True, device_map="auto"
                )
344
345
346

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

347
348
349
350
351
352
353
354
355
356
357
358
359
360
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
361
        ddpm.to(torch_device)
362
        ddpm.set_progress_bar_config(disable=None)
363
364
365

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
366
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname, device_map="auto")
367
            new_ddpm.to(torch_device)
368
369

        generator = torch.manual_seed(0)
370
        image = ddpm(generator=generator, output_type="numpy").images
371

372
        generator = generator.manual_seed(0)
373
        new_image = new_ddpm(generator=generator, output_type="numpy").images
374
375
376
377
378
379

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

380
        scheduler = DDPMScheduler(num_train_timesteps=10)
381

382
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler, device_map="auto")
383
        ddpm.to(torch_device)
384
        ddpm.set_progress_bar_config(disable=None)
385
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, device_map="auto")
386
        ddpm_from_hub.to(torch_device)
387
        ddpm_from_hub.set_progress_bar_config(disable=None)
388
389

        generator = torch.manual_seed(0)
390
        image = ddpm(generator=generator, output_type="numpy").images
391

392
        generator = generator.manual_seed(0)
393
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
394
395
396
397
398
399

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

400
401
        scheduler = DDPMScheduler(num_train_timesteps=10)

402
        # pass unet into DiffusionPipeline
403
404
405
406
        unet = UNet2DModel.from_pretrained(model_path, device_map="auto")
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(
            model_path, unet=unet, scheduler=scheduler, device_map="auto"
        )
407
        ddpm_from_hub_custom_model.to(torch_device)
408
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
409

410
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, device_map="auto")
411
        ddpm_from_hub.to(torch_device)
412
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
413
414

        generator = torch.manual_seed(0)
415
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
416

417
        generator = generator.manual_seed(0)
418
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
419
420
421
422
423
424

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

425
        pipe = DDIMPipeline.from_pretrained(model_path, device_map="auto")
426
        pipe.to(torch_device)
427
        pipe.set_progress_bar_config(disable=None)
428
429

        generator = torch.manual_seed(0)
430
        images = pipe(generator=generator, output_type="numpy").images
431
432
433
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

434
        images = pipe(generator=generator, output_type="pil").images
435
436
437
438
439
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
440
        images = pipe(generator=generator).images
441
442
443
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

444
445
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"
446

447
        unet = UNet2DModel.from_pretrained(model_id, device_map="auto")
448
449
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
450

451
452
453
454
455
456
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
457

458
459
        generator = torch.manual_seed(0)
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
460

461
462
        generator = torch.manual_seed(0)
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
463

464
465
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1
466

467
468
469
    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"
470

471
        unet = UNet2DModel.from_pretrained(model_id, device_map="auto")
472
473
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
474

475
476
477
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
478

479
480
481
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
482

483
484
485
486
487
488
489
        generator = torch.manual_seed(0)
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        ddim_images = ddim(
            batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy"
        ).images
490

491
492
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1