test_pipelines.py 32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import json
18
import os
19
import random
20
import shutil
21
22
23
24
25
26
27
28
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
29
    AutoencoderKL,
30
31
32
33
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
34
35
36
37
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
38
    PNDMScheduler,
39
    StableDiffusionImg2ImgPipeline,
40
    StableDiffusionInpaintPipelineLegacy,
41
    StableDiffusionPipeline,
42
    UNet2DConditionModel,
43
    UNet2DModel,
44
    logging,
45
46
)
from diffusers.pipeline_utils import DiffusionPipeline
47
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
48
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
49
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, require_torch_gpu
50
from parameterized import parameterized
51
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
52
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
53
54
55
56
57


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
58
59
60
61
62
63
64
65
66
67
68
69
70
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
71
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
72
73
74
75
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
76
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
77
78
79
80
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


81
82
83
84
85
86
87
88
89
90
91
92
93
94
class DownloadTests(unittest.TestCase):
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            _ = DiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            # We need to never convert this tiny model to safetensors for this test to pass
            assert not any(f.endswith(".safetensors") for f in files)

    def test_download_safetensors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            _ = DiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
                safety_checker=None,
                cache_dir=tmpdirname,
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".bin") for f in files)
113

114
115
116
117
118
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
119
120
121
122
123
124
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
125
126
127
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
128
        pipe_2 = pipe_2.to(torch_device)
129
130
131
132
133
134
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
135
136
137
138
139
140
141
142

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
143
144
145
146
147
148
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
149
150
151
152
153
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
154
            pipe_2 = pipe_2.to(torch_device)
155
156
157
158
159
160
161
162

            if torch_device == "mps":
                # device type MPS is not supported for torch.Generator() api.
                generator = torch.manual_seed(0)
            else:
                generator = torch.Generator(device=torch_device).manual_seed(0)

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
163
164
165
166
167
168

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
169
170
171
172
173
174
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
175
176
177
178
179
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
180
            pipe_2 = pipe_2.to(torch_device)
181
182
183
184
185
186
187
188

            if torch_device == "mps":
                # device type MPS is not supported for torch.Generator() api.
                generator = torch.manual_seed(0)
            else:
                generator = torch.Generator(device=torch_device).manual_seed(0)

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
189
190
191

        assert np.max(np.abs(out - out_2)) < 1e-3

192

Patrick von Platen's avatar
Patrick von Platen committed
193
194
195
196
197
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
198
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
199
200
201
202
203
204
205
206
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
207
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
208
209
210
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
211

Patrick von Platen's avatar
Patrick von Platen committed
212
213
214
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

215
    def test_local_custom_pipeline_repo(self):
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218
219
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
220
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
221
222
223
224
225
226
227
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def test_local_custom_pipeline_file(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

Patrick von Platen's avatar
Patrick von Platen committed
242
    @slow
243
    @require_torch_gpu
Patrick von Platen's avatar
Patrick von Platen committed
244
245
246
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

247
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
248
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
249
250
251
252
253
254

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
255
256
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
257
        )
258
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
259
260
261
262
263
264
265
266
267
268
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


269
270
271
272
273
274
275
276
277
class PipelineFastTests(unittest.TestCase):
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

278
    def dummy_uncond_unet(self, sample_size=32):
279
280
281
282
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
283
            sample_size=sample_size,
284
285
286
287
288
289
290
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

291
    def dummy_cond_unet(self, sample_size=32):
292
293
294
295
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
296
            sample_size=sample_size,
297
298
299
300
301
302
303
304
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

305
    @property
306
307
308
309
310
311
312
313
314
315
316
317
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

318
    @property
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

334
    @property
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

349
350
351
    @parameterized.expand(
        [
            [DDIMScheduler, DDIMPipeline, 32],
352
            [DDPMScheduler, DDPMPipeline, 32],
353
            [DDIMScheduler, DDIMPipeline, (32, 64)],
354
            [DDPMScheduler, DDPMPipeline, (64, 32)],
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        ]
    )
    def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
        unet = self.dummy_uncond_unet(sample_size)
        scheduler = scheduler_fn()
        pipeline = pipeline_fn(unet, scheduler).to(torch_device)

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        out_image = pipeline(
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images
        sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
        assert out_image.shape == (1, *sample_size, 3)

    def test_stable_diffusion_components(self):
377
        """Test that components property works correctly"""
378
        unet = self.dummy_cond_unet()
379
        scheduler = PNDMScheduler(skip_prk_steps=True)
380
381
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
382
383
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

384
        image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
385
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
386
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
387
388

        # make sure here that pndm scheduler skips prk
389
        inpaint = StableDiffusionInpaintPipelineLegacy(
390
391
392
393
394
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
395
            safety_checker=None,
396
            feature_extractor=self.dummy_extractor,
397
398
399
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
400
401

        prompt = "A painting of a squirrel eating a burger"
402
403
404
405
406
407
408

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

409
        image_inpaint = inpaint(
410
411
412
413
414
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
415
416
417
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
418
419
420
421
422
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
423
424
425
        ).images
        image_text2img = text2img(
            [prompt],
426
427
428
            generator=generator,
            num_inference_steps=2,
            output_type="np",
429
        ).images
430

431
432
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
433
        assert image_text2img.shape == (1, 64, 64, 3)
434

435
    def test_set_scheduler(self):
436
        unet = self.dummy_cond_unet()
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDIMScheduler)
        sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDPMScheduler)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, PNDMScheduler)
        sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, LMSDiscreteScheduler)
        sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerDiscreteScheduler)
        sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
        sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)

    def test_set_scheduler_consistency(self):
468
        unet = self.dummy_cond_unet()
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        pndm_config = sd.scheduler.config
        sd.scheduler = DDPMScheduler.from_config(pndm_config)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        pndm_config_2 = sd.scheduler.config
        pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}

        assert dict(pndm_config) == dict(pndm_config_2)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=ddim,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        ddim_config = sd.scheduler.config
        sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        ddim_config_2 = sd.scheduler.config
        ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}

        assert dict(ddim_config) == dict(ddim_config_2)

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    def test_optional_components(self):
        unet = self.dummy_cond_unet()
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        orig_sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=unet,
            feature_extractor=self.dummy_extractor,
        )
        sd = orig_sd

        assert sd.config.requires_safety_checker is True

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that passing None works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
            )

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that loading previous None works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            orig_sd.save_pretrained(tmpdirname)

            # Test that loading without any directory works
            shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                config["safety_checker"] = [None, None]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            # Test that loading from deleted model index works
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                del config["safety_checker"]
                del config["feature_extractor"]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor != (None, None)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname,
                feature_extractor=self.dummy_extractor,
                safety_checker=unet,
                requires_safety_checker=[True, True],
            )

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

615

616
617
@slow
class PipelineSlowTests(unittest.TestCase):
618
619
620
621
622
623
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

624
625
626
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
627
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

645
646
647
648
649
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
650
                DiffusionPipeline.from_pretrained(
651
652
653
654
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
655
                )
656

657
658
659
660
        assert (
            cap_logger.out
            == "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored.\n"
        )
661

662
663
664
665
666
667
668
669
670
671
672
673
674
675
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
676
        ddpm.to(torch_device)
677
        ddpm.set_progress_bar_config(disable=None)
678
679
680

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
681
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
682
            new_ddpm.to(torch_device)
683

684
        generator = torch.Generator(device=torch_device).manual_seed(0)
685
        image = ddpm(generator=generator, output_type="numpy").images
686

687
        generator = generator.manual_seed(0)
688
        new_image = new_ddpm(generator=generator, output_type="numpy").images
689
690
691
692
693
694

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

695
        scheduler = DDPMScheduler(num_train_timesteps=10)
696

697
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
698
        ddpm = ddpm.to(torch_device)
699
        ddpm.set_progress_bar_config(disable=None)
700

701
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
702
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
703
        ddpm_from_hub.set_progress_bar_config(disable=None)
704

705
        generator = torch.Generator(device=torch_device).manual_seed(0)
706
        image = ddpm(generator=generator, output_type="numpy").images
707

708
        generator = generator.manual_seed(0)
709
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
710
711
712
713
714
715

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

716
717
        scheduler = DDPMScheduler(num_train_timesteps=10)

718
        # pass unet into DiffusionPipeline
719
720
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
721
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
722
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
723

724
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
725
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
726
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
727

728
        generator = torch.Generator(device=torch_device).manual_seed(0)
729
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
730

731
        generator = generator.manual_seed(0)
732
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
733
734
735
736
737
738

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

739
        scheduler = DDIMScheduler.from_pretrained(model_path)
Patrick von Platen's avatar
Patrick von Platen committed
740
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
741
        pipe.to(torch_device)
742
        pipe.set_progress_bar_config(disable=None)
743

744
        generator = torch.Generator(device=torch_device).manual_seed(0)
745
        images = pipe(generator=generator, output_type="numpy").images
746
747
748
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

Patrick von Platen's avatar
Patrick von Platen committed
749
        images = pipe(generator=generator, output_type="pil", num_inference_steps=4).images
750
751
752
753
754
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
Patrick von Platen's avatar
Patrick von Platen committed
755
        images = pipe(generator=generator, num_inference_steps=4).images
756
757
758
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

759
760
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
761
        model_id = "google/ddpm-cifar10-32"
762

763
        unet = UNet2DModel.from_pretrained(model_id)
764
765
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
766

767
768
769
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
770

771
772
773
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
774

775
776
        generator = torch.Generator(device=torch_device).manual_seed(seed)
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
777

778
        generator = torch.Generator(device=torch_device).manual_seed(seed)
779
        ddim_images = ddim(
780
            batch_size=2,
781
782
783
784
785
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
786
        ).images
787

788
789
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1