test_pipelines.py 37.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import random
18
19
20
21
22
23
24
import tempfile
import unittest

import numpy as np
import torch

import PIL
25
from datasets import load_dataset
26
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
33
34
35
36
37
38
39
40
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
    LMSDiscreteScheduler,
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
41
42
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
43
    StableDiffusionPipeline,
44
    UNet2DConditionModel,
45
    UNet2DModel,
46
    VQModel,
47
48
)
from diffusers.pipeline_utils import DiffusionPipeline
49
50
51
from diffusers.testing_utils import floats_tensor, slow, torch_device
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
52
53
54
55
56


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
    ddpm(output_type="numpy")["sample"]
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
    ddpm(output_type="numpy")["sample"]
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


80
class PipelineFastTests(unittest.TestCase):
81
82
83
84
85
86
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            chunk_size_feed_forward=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
            return images, False

        return check

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_ddim(self):
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
196
        ddpm.set_progress_bar_config(disable=None)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        generator = torch.manual_seed(0)
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
        scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
215
        pndm.set_progress_bar_config(disable=None)
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(tensor_format="pt")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
234
        ldm.set_progress_bar_config(disable=None)
235
236
237
238
239
240
241
242
243
244
245
246
247
248

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_ddim(self):
249
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
273
        sd_pipe = sd_pipe.to(device)
274
        sd_pipe.set_progress_bar_config(disable=None)
275
276

        prompt = "A painting of a squirrel eating a burger"
277
278
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
279
280
281
282
283
284
285
286
287
288

        image = output["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5112, 0.4692, 0.4715, 0.5206, 0.4894, 0.5114, 0.5096, 0.4932, 0.4755])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
289
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
306
        sd_pipe = sd_pipe.to(device)
307
        sd_pipe.set_progress_bar_config(disable=None)
308
309

        prompt = "A painting of a squirrel eating a burger"
310
311
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
312
313
314
315
316
317
318
319
320
321

        image = output["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4937, 0.4649, 0.4716, 0.5145, 0.4889, 0.513, 0.513, 0.4905, 0.4738])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_lms(self):
322
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
339
        sd_pipe = sd_pipe.to(device)
340
        sd_pipe.set_progress_bar_config(disable=None)
341
342

        prompt = "A painting of a squirrel eating a burger"
343
344
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

        image = output["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
        scheduler = ScoreSdeVeScheduler(tensor_format="pt")

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
360
        sde_ve.set_progress_bar_config(disable=None)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

        torch.manual_seed(0)
        image = sde_ve(num_inference_steps=2, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)

        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler(tensor_format="pt")
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
379
        ldm.set_progress_bar_config(disable=None)
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

        generator = torch.manual_seed(0)
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
        scheduler = KarrasVeScheduler(tensor_format="pt")

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
396
        pipe.set_progress_bar_config(disable=None)
397
398
399
400
401
402
403
404
405
406

        generator = torch.manual_seed(0)
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_img2img(self):
407
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
408
409
410
411
412
413
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

414
        init_image = self.dummy_image.to(device)
415
416
417
418
419
420
421
422
423
424
425

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
426
        sd_pipe = sd_pipe.to(device)
427
        sd_pipe.set_progress_bar_config(disable=None)
428
429

        prompt = "A painting of a squirrel eating a burger"
430
431
432
433
434
435
436
437
438
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
439
440
441
442
443
444
445
446
447

        image = output["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )

        image = output["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

491
    def test_stable_diffusion_inpaint(self):
492
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
493
494
495
496
497
498
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

499
        image = self.dummy_image.to(device).permute(0, 2, 3, 1)[0]
500
501
502
503
504
505
506
507
508
509
510
511
512
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
513
        sd_pipe = sd_pipe.to(device)
514
        sd_pipe.set_progress_bar_config(disable=None)
515
516

        prompt = "A painting of a squirrel eating a burger"
517
518
519
520
521
522
523
524
525
526
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )
527
528
529
530
531
532
533
534
535
536

        image = output["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2


537
class PipelineTesterMixin(unittest.TestCase):
538
539
540
541
542
543
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

544
545
546
547
548
549
550
551
552
553
554
555
556
557
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
558
        ddpm.to(torch_device)
559
        ddpm.set_progress_bar_config(disable=None)
560
561
562
563

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
564
            new_ddpm.to(torch_device)
565
566
567
568
569
570
571
572
573
574
575
576
577

        generator = torch.manual_seed(0)

        image = ddpm(generator=generator, output_type="numpy")["sample"]
        generator = generator.manual_seed(0)
        new_image = new_ddpm(generator=generator, output_type="numpy")["sample"]

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

578
        scheduler = DDPMScheduler(num_train_timesteps=10)
579

580
581
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
582
        ddpm.set_progress_bar_config(disable=None)
583
584
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
585
        ddpm_from_hub.set_progress_bar_config(disable=None)
586
587
588
589
590
591
592
593
594
595
596
597
598

        generator = torch.manual_seed(0)

        image = ddpm(generator=generator, output_type="numpy")["sample"]
        generator = generator.manual_seed(0)
        new_image = ddpm_from_hub(generator=generator, output_type="numpy")["sample"]

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

599
600
        scheduler = DDPMScheduler(num_train_timesteps=10)

601
602
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
603
604
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
605
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
606

607
608
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
609
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
610
611
612
613
614
615
616
617
618
619
620
621
622
623

        generator = torch.manual_seed(0)

        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy")["sample"]
        generator = generator.manual_seed(0)
        new_image = ddpm_from_hub(generator=generator, output_type="numpy")["sample"]

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
624
        pipe.to(torch_device)
625
        pipe.set_progress_bar_config(disable=None)
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

        generator = torch.manual_seed(0)
        images = pipe(generator=generator, output_type="numpy")["sample"]
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

        images = pipe(generator=generator, output_type="pil")["sample"]
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
        images = pipe(generator=generator)["sample"]
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)
        scheduler = scheduler.set_format("pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
651
        ddpm.to(torch_device)
652
        ddpm.set_progress_bar_config(disable=None)
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

        generator = torch.manual_seed(0)
        image = ddpm(generator=generator, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
671
        ddpm.to(torch_device)
672
        ddpm.set_progress_bar_config(disable=None)
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

        generator = torch.manual_seed(0)
        image = ddpm(generator=generator, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler(tensor_format="pt")

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
691
        ddim.to(torch_device)
692
        ddim.set_progress_bar_config(disable=None)
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

        generator = torch.manual_seed(0)
        image = ddim(generator=generator, eta=0.0, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
711
        pndm.to(torch_device)
712
        pndm.set_progress_bar_config(disable=None)
713
714
715
716
717
718
719
720
721
722
723
724
        generator = torch.manual_seed(0)
        image = pndm(generator=generator, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
725
        ldm.to(torch_device)
726
        ldm.set_progress_bar_config(disable=None)
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
743
        ldm.to(torch_device)
744
        ldm.set_progress_bar_config(disable=None)
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion(self):
        # make sure here that pndm scheduler skips prk
760
761
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
762
        sd_pipe.set_progress_bar_config(disable=None)
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast("cuda"):
            output = sd_pipe(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
            )

        image = output["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_fast_ddim(self):
782
783
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
784
        sd_pipe.set_progress_bar_config(disable=None)
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        sd_pipe.scheduler = scheduler

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        with torch.autocast("cuda"):
            output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
        image = output["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8354, 0.83, 0.866, 0.838, 0.8315, 0.867, 0.836, 0.8584, 0.869])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
816
        sde_ve.to(torch_device)
817
        sde_ve.set_progress_bar_config(disable=None)
818
819
820
821
822
823
824
825
826
827
828
829
830
831

        torch.manual_seed(0)
        image = sde_ve(num_inference_steps=300, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)

        expected_slice = np.array([0.64363, 0.5868, 0.3031, 0.2284, 0.7409, 0.3216, 0.25643, 0.6557, 0.2633])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
832
        ldm.to(torch_device)
833
        ldm.set_progress_bar_config(disable=None)
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

        generator = torch.manual_seed(0)
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler(tensor_format="pt")
        ddim_scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
853
        ddpm.to(torch_device)
854
        ddpm.set_progress_bar_config(disable=None)
855
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
856
        ddim.to(torch_device)
857
        ddim.set_progress_bar_config(disable=None)
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

        generator = torch.manual_seed(0)
        ddpm_image = ddpm(generator=generator, output_type="numpy")["sample"]

        generator = torch.manual_seed(0)
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")["sample"]

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1

    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler(tensor_format="pt")
        ddim_scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
877
        ddpm.to(torch_device)
878
        ddpm.set_progress_bar_config(disable=None)
879

880
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
881
        ddim.to(torch_device)
882
        ddim.set_progress_bar_config(disable=None)
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

        generator = torch.manual_seed(0)
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy")["sample"]

        generator = torch.manual_seed(0)
        ddim_images = ddim(batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")[
            "sample"
        ]

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1

    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
        scheduler = KarrasVeScheduler(tensor_format="pt")

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
902
        pipe.to(torch_device)
903
        pipe.set_progress_bar_config(disable=None)
904
905
906
907
908
909
910
911
912
913
914
915
916
917

        generator = torch.manual_seed(0)
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy")["sample"]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.26815, 0.1581, 0.2658, 0.23248, 0.1550, 0.2539, 0.1131, 0.1024, 0.0837])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_lms_stable_diffusion_pipeline(self):
        model_id = "CompVis/stable-diffusion-v1-1"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(torch_device)
918
        pipe.set_progress_bar_config(disable=None)
919
920
921
922
923
924
925
926
927
928
929
930
931
        scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler", use_auth_token=True)
        pipe.scheduler = scheduler

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
932
933
934
935
936
937

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_pipeline(self):
        ds = load_dataset("hf-internal-testing/diffusers-images", split="train")

938
        init_image = ds[2]["image"].resize((768, 512))
939
940
941
942
943
        output_image = ds[0]["image"].resize((768, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, use_auth_token=True)
        pipe.to(torch_device)
944
        pipe.set_progress_bar_config(disable=None)
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)[
            "sample"
        ][0]

        expected_array = np.array(output_image)
        sampled_array = np.array(image)

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-4

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
961
    def test_stable_diffusion_img2img_pipeline_k_lms(self):
962
963
964
        ds = load_dataset("hf-internal-testing/diffusers-images", split="train")

        init_image = ds[2]["image"].resize((768, 512))
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
        output_image = ds[1]["image"].resize((768, 512))

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, scheduler=lms, use_auth_token=True)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)[
            "sample"
        ][0]

        expected_array = np.array(output_image)
        sampled_array = np.array(image)

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-4

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_in_paint_pipeline(self):
        ds = load_dataset("hf-internal-testing/diffusers-images", split="train")

        init_image = ds[3]["image"].resize((768, 512))
        mask_image = ds[4]["image"].resize((768, 512))
        output_image = ds[5]["image"].resize((768, 512))
995
996
997
998

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, use_auth_token=True)
        pipe.to(torch_device)
999
        pipe.set_progress_bar_config(disable=None)
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

        prompt = "A red cat sitting on a parking bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
        )["sample"][0]

        expected_array = np.array(output_image)
        sampled_array = np.array(image)

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-3