test_pipelines.py 22.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
20
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    PNDMScheduler,
33
    StableDiffusionImg2ImgPipeline,
34
    StableDiffusionInpaintPipelineLegacy,
35
    StableDiffusionPipeline,
36
    UNet2DConditionModel,
37
    UNet2DModel,
38
    VQModel,
39
    logging,
40
41
)
from diffusers.pipeline_utils import DiffusionPipeline
42
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
43
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
44
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, require_torch_gpu
45
from parameterized import parameterized
46
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
47
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
48
49
50
51
52


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
53
54
55
56
57
58
59
60
61
62
63
64
65
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
66
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
67
68
69
70
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
71
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
72
73
74
75
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
class DownloadTests(unittest.TestCase):
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            _ = DiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        generator = torch.Generator(device=torch_device).manual_seed(0)
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        generator_2 = torch.Generator(device=torch_device).manual_seed(0)
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator_2, output_type="numpy").images

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        generator = torch.Generator(device=torch_device).manual_seed(0)
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
            generator_2 = torch.Generator(device=torch_device).manual_seed(0)
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator_2, output_type="numpy").images

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        generator = torch.Generator(device=torch_device).manual_seed(0)
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
            generator_2 = torch.Generator(device=torch_device).manual_seed(0)
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator_2, output_type="numpy").images

        assert np.max(np.abs(out - out_2)) < 1e-3

135

Patrick von Platen's avatar
Patrick von Platen committed
136
137
138
139
140
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
141
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
142
143
144
145
146
147
148
149
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
150
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
154

Patrick von Platen's avatar
Patrick von Platen committed
155
156
157
158
159
160
161
162
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
163
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
164
165
166
167
168
169
170
171
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
172
    @require_torch_gpu
Patrick von Platen's avatar
Patrick von Platen committed
173
174
175
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

176
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
177
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
178
179
180
181
182
183

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
184
185
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
186
        )
187
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
188
189
190
191
192
193
194
195
196
197
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
class PipelineFastTests(unittest.TestCase):
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

309
310
    def test_components(self):
        """Test that components property works correctly"""
311
        unet = self.dummy_cond_unet
312
        scheduler = PNDMScheduler(skip_prk_steps=True)
313
314
315
316
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

317
318
319
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
320
321

        # make sure here that pndm scheduler skips prk
322
        inpaint = StableDiffusionInpaintPipelineLegacy(
323
324
325
326
327
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
328
            safety_checker=None,
329
            feature_extractor=self.dummy_extractor,
330
331
332
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
333
334

        prompt = "A painting of a squirrel eating a burger"
335
336
337
338
339
340
341

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

342
        image_inpaint = inpaint(
343
344
345
346
347
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
348
349
350
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
351
352
353
354
355
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
356
357
358
        ).images
        image_text2img = text2img(
            [prompt],
359
360
361
            generator=generator,
            num_inference_steps=2,
            output_type="np",
362
        ).images
363

364
365
366
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
        assert image_text2img.shape == (1, 128, 128, 3)
367

368

369
370
@slow
class PipelineSlowTests(unittest.TestCase):
371
372
373
374
375
376
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

377
378
379
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
380
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

398
399
400
401
402
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
403
                DiffusionPipeline.from_pretrained(
404
405
406
407
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
408
                )
409
410
411

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

412
413
414
415
416
417
418
419
420
421
422
423
424
425
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
426
        ddpm.to(torch_device)
427
        ddpm.set_progress_bar_config(disable=None)
428
429
430

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
431
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
432
            new_ddpm.to(torch_device)
433
434

        generator = torch.manual_seed(0)
435
        image = ddpm(generator=generator, output_type="numpy").images
436

437
        generator = generator.manual_seed(0)
438
        new_image = new_ddpm(generator=generator, output_type="numpy").images
439
440
441
442
443
444

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

445
        scheduler = DDPMScheduler(num_train_timesteps=10)
446

447
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
448
        ddpm = ddpm.to(torch_device)
449
        ddpm.set_progress_bar_config(disable=None)
450

451
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
452
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
453
        ddpm_from_hub.set_progress_bar_config(disable=None)
454
455

        generator = torch.manual_seed(0)
456
        image = ddpm(generator=generator, output_type="numpy").images
457

458
        generator = generator.manual_seed(0)
459
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
460
461
462
463
464
465

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

466
467
        scheduler = DDPMScheduler(num_train_timesteps=10)

468
        # pass unet into DiffusionPipeline
469
470
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
471
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
472
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
473

474
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
475
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
476
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
477
478

        generator = torch.manual_seed(0)
479
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
480

481
        generator = generator.manual_seed(0)
482
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
483
484
485
486
487
488

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

Patrick von Platen's avatar
Patrick von Platen committed
489
490
        scheduler = DDIMScheduler.from_config(model_path)
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
491
        pipe.to(torch_device)
492
        pipe.set_progress_bar_config(disable=None)
493
494

        generator = torch.manual_seed(0)
495
        images = pipe(generator=generator, output_type="numpy").images
496
497
498
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

Patrick von Platen's avatar
Patrick von Platen committed
499
        images = pipe(generator=generator, output_type="pil", num_inference_steps=4).images
500
501
502
503
504
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
Patrick von Platen's avatar
Patrick von Platen committed
505
        images = pipe(generator=generator, num_inference_steps=4).images
506
507
508
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

509
510
511
    # Make sure the test passes for different values of random seed
    @parameterized.expand([(0,), (4,)])
    def test_ddpm_ddim_equality(self, seed):
512
        model_id = "google/ddpm-cifar10-32"
513

514
        unet = UNet2DModel.from_pretrained(model_id)
515
516
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
517

518
519
520
521
522
523
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
524

525
        generator = torch.manual_seed(seed)
526
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
527

528
529
530
531
532
533
534
535
        generator = torch.manual_seed(seed)
        ddim_image = ddim(
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
        ).images
536

537
538
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1
539

540
541
542
    # Make sure the test passes for different values of random seed
    @parameterized.expand([(0,), (4,)])
    def test_ddpm_ddim_equality_batched(self, seed):
543
        model_id = "google/ddpm-cifar10-32"
544

545
        unet = UNet2DModel.from_pretrained(model_id)
546
547
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
548

549
550
551
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
552

553
554
555
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
556

557
        generator = torch.manual_seed(seed)
558
559
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images

560
        generator = torch.manual_seed(seed)
561
        ddim_images = ddim(
562
563
564
565
566
567
            batch_size=4,
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
568
        ).images
569

570
571
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1