test_pipelines.py 19.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
20
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    PNDMScheduler,
33
    StableDiffusionImg2ImgPipeline,
34
    StableDiffusionInpaintPipelineLegacy,
35
    StableDiffusionPipeline,
36
    UNet2DConditionModel,
37
    UNet2DModel,
38
    VQModel,
39
    logging,
40
41
)
from diffusers.pipeline_utils import DiffusionPipeline
42
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
43
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
44
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir
45
from parameterized import parameterized
46
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
47
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
48
49
50
51
52


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
53
54
55
56
57
58
59
60
61
62
63
64
65
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
66
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
67
68
69
70
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
71
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
72
73
74
75
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


Patrick von Platen's avatar
Patrick von Platen committed
76
77
78
79
80
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
81
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
82
83
84
85
86
87
88
89
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
90
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
91
92
93
94
95
96
97
98
99
100
101
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
102
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
108
109
110
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
111
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

115
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id, device_map="auto")
116
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
121
122

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
123
124
            torch_dtype=torch.float16,
            revision="fp16",
125
            device_map="auto",
Patrick von Platen's avatar
Patrick von Platen committed
126
        )
127
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
131
132
133
134
135
136
137
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
class PipelineFastTests(unittest.TestCase):
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

249
250
    def test_components(self):
        """Test that components property works correctly"""
251
        unet = self.dummy_cond_unet
252
        scheduler = PNDMScheduler(skip_prk_steps=True)
253
254
255
256
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

257
258
259
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
260
261

        # make sure here that pndm scheduler skips prk
262
        inpaint = StableDiffusionInpaintPipelineLegacy(
263
264
265
266
267
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
268
            safety_checker=None,
269
            feature_extractor=self.dummy_extractor,
270
271
272
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
273
274

        prompt = "A painting of a squirrel eating a burger"
275
276
277
278
279
280
281

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

282
        image_inpaint = inpaint(
283
284
285
286
287
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
288
289
290
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
291
292
293
294
295
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
296
297
298
        ).images
        image_text2img = text2img(
            [prompt],
299
300
301
            generator=generator,
            num_inference_steps=2,
            output_type="np",
302
        ).images
303

304
305
306
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
        assert image_text2img.shape == (1, 128, 128, 3)
307

308

309
310
@slow
class PipelineSlowTests(unittest.TestCase):
311
312
313
314
315
316
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

317
318
319
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
320
321
322
            _ = DiffusionPipeline.from_pretrained(
                model_id, cache_dir=tmpdirname, force_download=True, device_map="auto"
            )
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

340
341
342
343
344
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
345
346
347
                DiffusionPipeline.from_pretrained(
                    model_id, not_used=True, cache_dir=tmpdirname, force_download=True, device_map="auto"
                )
348
349
350

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

351
352
353
354
355
356
357
358
359
360
361
362
363
364
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
365
        ddpm.to(torch_device)
366
        ddpm.set_progress_bar_config(disable=None)
367
368
369

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
370
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname, device_map="auto")
371
            new_ddpm.to(torch_device)
372
373

        generator = torch.manual_seed(0)
374
        image = ddpm(generator=generator, output_type="numpy").images
375

376
        generator = generator.manual_seed(0)
377
        new_image = new_ddpm(generator=generator, output_type="numpy").images
378
379
380
381
382
383

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

384
        scheduler = DDPMScheduler(num_train_timesteps=10)
385

386
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler, device_map="auto")
387
        ddpm = ddpm.to(torch_device)
388
        ddpm.set_progress_bar_config(disable=None)
389

390
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, device_map="auto")
391
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
392
        ddpm_from_hub.set_progress_bar_config(disable=None)
393
394

        generator = torch.manual_seed(0)
395
        image = ddpm(generator=generator, output_type="numpy").images
396

397
        generator = generator.manual_seed(0)
398
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
399
400
401
402
403
404

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

405
406
        scheduler = DDPMScheduler(num_train_timesteps=10)

407
        # pass unet into DiffusionPipeline
408
409
410
411
        unet = UNet2DModel.from_pretrained(model_path, device_map="auto")
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(
            model_path, unet=unet, scheduler=scheduler, device_map="auto"
        )
412
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
413
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
414

415
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, device_map="auto")
416
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
417
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
418
419

        generator = torch.manual_seed(0)
420
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
421

422
        generator = generator.manual_seed(0)
423
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
424
425
426
427
428
429

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

430
        pipe = DDIMPipeline.from_pretrained(model_path, device_map="auto")
431
        pipe.to(torch_device)
432
        pipe.set_progress_bar_config(disable=None)
433
434

        generator = torch.manual_seed(0)
435
        images = pipe(generator=generator, output_type="numpy").images
436
437
438
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

439
        images = pipe(generator=generator, output_type="pil").images
440
441
442
443
444
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
445
        images = pipe(generator=generator).images
446
447
448
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

449
450
451
    # Make sure the test passes for different values of random seed
    @parameterized.expand([(0,), (4,)])
    def test_ddpm_ddim_equality(self, seed):
452
        model_id = "google/ddpm-cifar10-32"
453

454
        unet = UNet2DModel.from_pretrained(model_id, device_map="auto")
455
456
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
457

458
459
460
461
462
463
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
464

465
        generator = torch.manual_seed(seed)
466
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
467

468
469
470
471
472
473
474
475
        generator = torch.manual_seed(seed)
        ddim_image = ddim(
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
        ).images
476

477
478
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1
479

480
481
482
    # Make sure the test passes for different values of random seed
    @parameterized.expand([(0,), (4,)])
    def test_ddpm_ddim_equality_batched(self, seed):
483
        model_id = "google/ddpm-cifar10-32"
484

485
        unet = UNet2DModel.from_pretrained(model_id, device_map="auto")
486
487
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
488

489
490
491
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
492

493
494
495
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
496

497
        generator = torch.manual_seed(seed)
498
499
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images

500
        generator = torch.manual_seed(seed)
501
        ddim_images = ddim(
502
503
504
505
506
507
            batch_size=4,
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
508
        ).images
509

510
511
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1