test_pipelines.py 49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import random
18
19
20
21
22
23
24
import tempfile
import unittest

import numpy as np
import torch

import PIL
25
from datasets import load_dataset
26
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
33
34
35
36
37
38
39
40
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
    LMSDiscreteScheduler,
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
41
42
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
43
    StableDiffusionOnnxPipeline,
44
    StableDiffusionPipeline,
45
    UNet2DConditionModel,
46
    UNet2DModel,
47
    VQModel,
48
49
)
from diffusers.pipeline_utils import DiffusionPipeline
50
51
52
from diffusers.testing_utils import floats_tensor, slow, torch_device
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
53
54
55
56
57


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
58
59
60
61
62
63
64
65
66
67
68
69
70
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
71
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
72
73
74
75
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
76
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
77
78
79
80
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


81
class PipelineFastTests(unittest.TestCase):
82
83
84
85
86
87
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
            return images, False

        return check

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_ddim(self):
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
196
        ddpm.set_progress_bar_config(disable=None)
197

198
199
200
201
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

202
        generator = torch.manual_seed(0)
203
204
205
206
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
207
208

        image_slice = image[0, -3:, -3:, -1]
209
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
210
211
212
213
214

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
215
216
217
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
218
219
220
221
222
223
224

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
        scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
225
        pndm.set_progress_bar_config(disable=None)
226
227
228
229

        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images

230
        generator = torch.manual_seed(0)
231
        image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
232
233

        image_slice = image[0, -3:, -3:, -1]
234
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
235
236
237
238

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
239
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
240
241
242
243
244
245
246
247
248
249

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(tensor_format="pt")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
250
        ldm.set_progress_bar_config(disable=None)
251
252

        prompt = "A painting of a squirrel eating a burger"
253
254
255
256
257
258
259
260

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy")[
                "sample"
            ]

261
262
263
264
265
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy")[
            "sample"
        ]

266
267
268
269
270
271
272
273
274
275
        generator = torch.manual_seed(0)
        image_from_tuple = ldm(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="numpy",
            return_dict=False,
        )[0]

276
        image_slice = image[0, -3:, -3:, -1]
277
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
278
279
280
281

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
282
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
283
284

    def test_stable_diffusion_ddim(self):
285
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
309
        sd_pipe = sd_pipe.to(device)
310
        sd_pipe.set_progress_bar_config(disable=None)
311
312

        prompt = "A painting of a squirrel eating a burger"
313

314
315
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
316
        image = output.images
317

318
319
320
321
322
323
324
325
326
        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
327
328

        image_slice = image[0, -3:, -3:, -1]
329
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
330
331
332
333

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5112, 0.4692, 0.4715, 0.5206, 0.4894, 0.5114, 0.5096, 0.4932, 0.4755])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
334
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
335
336

    def test_stable_diffusion_pndm(self):
337
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
354
        sd_pipe = sd_pipe.to(device)
355
        sd_pipe.set_progress_bar_config(disable=None)
356
357

        prompt = "A painting of a squirrel eating a burger"
358
359
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
360

361
362
363
364
365
366
367
368
369
370
371
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
372
373

        image_slice = image[0, -3:, -3:, -1]
374
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
375
376
377
378

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4937, 0.4649, 0.4716, 0.5145, 0.4889, 0.513, 0.513, 0.4905, 0.4738])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
379
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
380
381

    def test_stable_diffusion_k_lms(self):
382
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
399
        sd_pipe = sd_pipe.to(device)
400
        sd_pipe.set_progress_bar_config(disable=None)
401
402

        prompt = "A painting of a squirrel eating a burger"
403
404
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
405

406
407
408
409
410
411
412
413
414
415
416
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
417
418

        image_slice = image[0, -3:, -3:, -1]
419
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
420
421
422
423

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
424
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
    def test_stable_diffusion_attention_chunk(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure chunking the attention yields the same result
        sd_pipe.enable_attention_slicing(slice_size=1)
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4

458
459
460
461
462
463
    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
        scheduler = ScoreSdeVeScheduler(tensor_format="pt")

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
464
        sde_ve.set_progress_bar_config(disable=None)
465
466

        torch.manual_seed(0)
467
468
469
470
        image = sde_ve(num_inference_steps=2, output_type="numpy").images

        torch.manual_seed(0)
        image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", return_dict=False)[0]
471
472

        image_slice = image[0, -3:, -3:, -1]
473
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
474
475
476
477
478

        assert image.shape == (1, 32, 32, 3)

        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
479
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
480
481
482
483
484
485
486
487

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler(tensor_format="pt")
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
488
        ldm.set_progress_bar_config(disable=None)
489

490
491
492
493
494
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images

495
        generator = torch.manual_seed(0)
496
497
498
499
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
500
501

        image_slice = image[0, -3:, -3:, -1]
502
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
503
504
505
506

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
507
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
508
509
510
511
512
513
514

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
        scheduler = KarrasVeScheduler(tensor_format="pt")

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
515
        pipe.set_progress_bar_config(disable=None)
516
517

        generator = torch.manual_seed(0)
518
519
520
521
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
522
523

        image_slice = image[0, -3:, -3:, -1]
524
525
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

526
527
528
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
529
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
530
531

    def test_stable_diffusion_img2img(self):
532
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
533
534
535
536
537
538
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

539
        init_image = self.dummy_image.to(device)
540
541
542
543
544
545
546
547
548
549
550

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
551
        sd_pipe = sd_pipe.to(device)
552
        sd_pipe.set_progress_bar_config(disable=None)
553
554

        prompt = "A painting of a squirrel eating a burger"
555
556
557
558
559
560
561
562
563
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
564

565
566
567
568
569
570
571
572
573
574
575
576
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )[0]
577
578

        image_slice = image[0, -3:, -3:, -1]
579
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
580
581
582
583

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
584
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
585

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
620
        image = output.images
621

622
623
624
625
626
627
628
629
630
631
632
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )
        image_from_tuple = output[0]
633
634

        image_slice = image[0, -3:, -3:, -1]
635
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
636
637
638
639

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
640
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
641

642
    def test_stable_diffusion_inpaint(self):
643
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
644
645
646
647
648
649
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

650
        image = self.dummy_image.to(device).permute(0, 2, 3, 1)[0]
651
652
653
654
655
656
657
658
659
660
661
662
663
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
664
        sd_pipe = sd_pipe.to(device)
665
        sd_pipe.set_progress_bar_config(disable=None)
666
667

        prompt = "A painting of a squirrel eating a burger"
668
669
670
671
672
673
674
675
676
677
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )
678

679
680
681
682
683
684
685
686
687
688
689
690
691
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            return_dict=False,
        )[0]
692
693

        image_slice = image[0, -3:, -3:, -1]
694
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
695
696
697
698

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
699
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
700
701


702
class PipelineTesterMixin(unittest.TestCase):
703
704
705
706
707
708
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

709
710
711
712
713
714
715
716
717
718
719
720
721
722
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
723
        ddpm.to(torch_device)
724
        ddpm.set_progress_bar_config(disable=None)
725
726
727
728

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
729
            new_ddpm.to(torch_device)
730
731
732

        generator = torch.manual_seed(0)

733
        image = ddpm(generator=generator, output_type="numpy").images
734
        generator = generator.manual_seed(0)
735
        new_image = new_ddpm(generator=generator, output_type="numpy").images
736
737
738
739
740
741
742

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

743
        scheduler = DDPMScheduler(num_train_timesteps=10)
744

745
746
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
747
        ddpm.set_progress_bar_config(disable=None)
748
749
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
750
        ddpm_from_hub.set_progress_bar_config(disable=None)
751
752
753

        generator = torch.manual_seed(0)

754
        image = ddpm(generator=generator, output_type="numpy").images
755
        generator = generator.manual_seed(0)
756
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
757
758
759
760
761
762
763

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

764
765
        scheduler = DDPMScheduler(num_train_timesteps=10)

766
767
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
768
769
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
770
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
771

772
773
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
774
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
775
776
777

        generator = torch.manual_seed(0)

778
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
779
        generator = generator.manual_seed(0)
780
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
781
782
783
784
785
786
787
788

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
789
        pipe.to(torch_device)
790
        pipe.set_progress_bar_config(disable=None)
791
792

        generator = torch.manual_seed(0)
793
        images = pipe(generator=generator, output_type="numpy").images
794
795
796
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

797
        images = pipe(generator=generator, output_type="pil").images
798
799
800
801
802
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
803
        images = pipe(generator=generator).images
804
805
806
807
808
809
810
811
812
813
814
815
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)
        scheduler = scheduler.set_format("pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
816
        ddpm.to(torch_device)
817
        ddpm.set_progress_bar_config(disable=None)
818
819

        generator = torch.manual_seed(0)
820
        image = ddpm(generator=generator, output_type="numpy").images
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
836
        ddpm.to(torch_device)
837
        ddpm.set_progress_bar_config(disable=None)
838
839

        generator = torch.manual_seed(0)
840
        image = ddpm(generator=generator, output_type="numpy").images
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler(tensor_format="pt")

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
856
        ddim.to(torch_device)
857
        ddim.set_progress_bar_config(disable=None)
858
859

        generator = torch.manual_seed(0)
860
        image = ddim(generator=generator, eta=0.0, output_type="numpy").images
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
876
        pndm.to(torch_device)
877
        pndm.set_progress_bar_config(disable=None)
878
        generator = torch.manual_seed(0)
879
        image = pndm(generator=generator, output_type="numpy").images
880
881
882
883
884
885
886
887
888
889

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
890
        ldm.to(torch_device)
891
        ldm.set_progress_bar_config(disable=None)
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
908
        ldm.to(torch_device)
909
        ldm.set_progress_bar_config(disable=None)
910
911
912

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
913
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
914
915
916
917
918
919
920
921
922
923
924

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion(self):
        # make sure here that pndm scheduler skips prk
925
926
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
927
        sd_pipe.set_progress_bar_config(disable=None)
928
929
930
931
932
933
934
935

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast("cuda"):
            output = sd_pipe(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
            )

936
        image = output.images
937
938
939
940
941
942
943
944
945
946

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_fast_ddim(self):
947
948
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
949
        sd_pipe.set_progress_bar_config(disable=None)
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        sd_pipe.scheduler = scheduler

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        with torch.autocast("cuda"):
            output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
965
        image = output.images
966
967
968
969

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
970
        expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918])
971
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
972
973
974
975
976
977
978
979
980

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
981
        sde_ve.to(torch_device)
982
        sde_ve.set_progress_bar_config(disable=None)
983
984

        torch.manual_seed(0)
985
        image = sde_ve(num_inference_steps=300, output_type="numpy").images
986
987
988
989
990
991
992
993
994
995
996

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)

        expected_slice = np.array([0.64363, 0.5868, 0.3031, 0.2284, 0.7409, 0.3216, 0.25643, 0.6557, 0.2633])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
997
        ldm.to(torch_device)
998
        ldm.set_progress_bar_config(disable=None)
999
1000

        generator = torch.manual_seed(0)
1001
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler(tensor_format="pt")
        ddim_scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1018
        ddpm.to(torch_device)
1019
        ddpm.set_progress_bar_config(disable=None)
1020
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1021
        ddim.to(torch_device)
1022
        ddim.set_progress_bar_config(disable=None)
1023
1024

        generator = torch.manual_seed(0)
1025
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
1026
1027

        generator = torch.manual_seed(0)
1028
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1

    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler(tensor_format="pt")
        ddim_scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1042
        ddpm.to(torch_device)
1043
        ddpm.set_progress_bar_config(disable=None)
1044

1045
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1046
        ddim.to(torch_device)
1047
        ddim.set_progress_bar_config(disable=None)
1048
1049

        generator = torch.manual_seed(0)
1050
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066

        generator = torch.manual_seed(0)
        ddim_images = ddim(batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")[
            "sample"
        ]

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1

    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
        scheduler = KarrasVeScheduler(tensor_format="pt")

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
1067
        pipe.to(torch_device)
1068
        pipe.set_progress_bar_config(disable=None)
1069
1070

        generator = torch.manual_seed(0)
1071
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.26815, 0.1581, 0.2658, 0.23248, 0.1550, 0.2539, 0.1131, 0.1024, 0.0837])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_lms_stable_diffusion_pipeline(self):
        model_id = "CompVis/stable-diffusion-v1-1"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(torch_device)
1083
        pipe.set_progress_bar_config(disable=None)
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
        scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler", use_auth_token=True)
        pipe.scheduler = scheduler

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1097
1098
1099

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
    def test_stable_diffusion_memory_chunking(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True
        ).to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        # make attention efficient
        pipe.enable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output_chunked = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image_chunked = output_chunked.images

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

        # disable chunking
        pipe.disable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
        assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1140
    def test_stable_diffusion_img2img_pipeline(self):
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
        ds = load_dataset(
            "imagefolder",
            data_files={
                "input": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/img2img/sketch-mountains-input.jpg"
                ],
                "output": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/img2img/fantasy_landscape.png"
                ],
            },
        )
1154

1155
1156
        init_image = ds["input"]["image"][0].resize((768, 512))
        output_image = ds["output"]["image"][0].resize((768, 512))
1157
1158

        model_id = "CompVis/stable-diffusion-v1-4"
1159
1160
1161
1162
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            use_auth_token=True,
        )
1163
        pipe.to(torch_device)
1164
        pipe.enable_attention_slicing()
1165
        pipe.set_progress_bar_config(disable=None)
1166
1167
1168
1169

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1170
1171
1172
        with torch.autocast("cuda"):
            output = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)
        image = output.images[0]
1173

1174
1175
        expected_array = np.array(output_image) / 255.0
        sampled_array = np.array(image) / 255.0
1176
1177
1178
1179
1180
1181

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-4

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1182
    def test_stable_diffusion_img2img_pipeline_k_lms(self):
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
        ds = load_dataset(
            "imagefolder",
            data_files={
                "input": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/img2img/sketch-mountains-input.jpg"
                ],
                "output": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/img2img/fantasy_landscape_k_lms.png"
                ],
            },
        )
1196

1197
1198
        init_image = ds["input"]["image"][0].resize((768, 512))
        output_image = ds["output"]["image"][0].resize((768, 512))
1199
1200
1201
1202

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
1203
1204
1205
1206
1207
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=lms,
            use_auth_token=True,
        )
1208
        pipe.enable_attention_slicing()
1209
1210
1211
1212
1213
1214
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1215
1216
        with torch.autocast("cuda"):
            output = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)
1217
        image = output.images[0]
1218

1219
1220
        expected_array = np.array(output_image) / 255.0
        sampled_array = np.array(image) / 255.0
1221
1222
1223
1224
1225
1226

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-4

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1227
    def test_stable_diffusion_inpaint_pipeline(self):
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
        ds = load_dataset(
            "imagefolder",
            data_files={
                "input": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/in_paint/overture-creations-5sI6fQgYIuo.png"
                ],
                "mask": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
                ],
                "output": [
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/in_paint/red_cat_sitting_on_a_parking_bench.png"
                ],
            },
        )
1245

1246
1247
1248
        init_image = ds["input"]["image"][0].resize((768, 512))
        mask_image = ds["mask"]["image"][0].resize((768, 512))
        output_image = ds["output"]["image"][0].resize((768, 512))
1249
1250

        model_id = "CompVis/stable-diffusion-v1-4"
1251
1252
1253
1254
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
            use_auth_token=True,
        )
1255
        pipe.to(torch_device)
1256
        pipe.enable_attention_slicing()
1257
        pipe.set_progress_bar_config(disable=None)
1258
1259
1260
1261

        prompt = "A red cat sitting on a parking bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
        with torch.autocast("cuda"):
            output = pipe(
                prompt=prompt,
                init_image=init_image,
                mask_image=mask_image,
                strength=0.75,
                guidance_scale=7.5,
                generator=generator,
            )
        image = output.images[0]
1272

1273
1274
        expected_array = np.array(output_image) / 255.0
        sampled_array = np.array(image) / 255.0
1275
1276
1277

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-3
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297

    @slow
    def test_stable_diffusion_onnx(self):
        from scripts.convert_stable_diffusion_checkpoint_to_onnx import convert_models

        with tempfile.TemporaryDirectory() as tmpdirname:
            convert_models("CompVis/stable-diffusion-v1-4", tmpdirname, opset=14)

            sd_pipe = StableDiffusionOnnxPipeline.from_pretrained(tmpdirname, provider="CUDAExecutionProvider")

        prompt = "A painting of a squirrel eating a burger"
        np.random.seed(0)
        output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=20, output_type="np")
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0385, 0.0252, 0.0234, 0.0287, 0.0358, 0.0287, 0.0276, 0.0235, 0.0010])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3