Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
e8140304
Unverified
Commit
e8140304
authored
Aug 31, 2022
by
Patrick von Platen
Committed by
GitHub
Aug 31, 2022
Browse files
[Tests] Add fast pipeline tests (#302)
* add fast tests * Finish
parent
bc2ad5a6
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
411 additions
and
1 deletion
+411
-1
tests/test_pipelines.py
tests/test_pipelines.py
+411
-1
No files found.
tests/test_pipelines.py
View file @
e8140304
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
random
import
tempfile
import
tempfile
import
unittest
import
unittest
...
@@ -22,6 +23,7 @@ import torch
...
@@ -22,6 +23,7 @@ import torch
import
PIL
import
PIL
from
datasets
import
load_dataset
from
datasets
import
load_dataset
from
diffusers
import
(
from
diffusers
import
(
AutoencoderKL
,
DDIMPipeline
,
DDIMPipeline
,
DDIMScheduler
,
DDIMScheduler
,
DDPMPipeline
,
DDPMPipeline
,
...
@@ -38,10 +40,14 @@ from diffusers import (
...
@@ -38,10 +40,14 @@ from diffusers import (
StableDiffusionImg2ImgPipeline
,
StableDiffusionImg2ImgPipeline
,
StableDiffusionInpaintPipeline
,
StableDiffusionInpaintPipeline
,
StableDiffusionPipeline
,
StableDiffusionPipeline
,
UNet2DConditionModel
,
UNet2DModel
,
UNet2DModel
,
VQModel
,
)
)
from
diffusers.pipeline_utils
import
DiffusionPipeline
from
diffusers.pipeline_utils
import
DiffusionPipeline
from
diffusers.testing_utils
import
slow
,
torch_device
from
diffusers.testing_utils
import
floats_tensor
,
slow
,
torch_device
from
PIL
import
Image
from
transformers
import
CLIPTextConfig
,
CLIPTextModel
,
CLIPTokenizer
torch
.
backends
.
cuda
.
matmul
.
allow_tf32
=
False
torch
.
backends
.
cuda
.
matmul
.
allow_tf32
=
False
...
@@ -70,6 +76,410 @@ def test_progress_bar(capsys):
...
@@ -70,6 +76,410 @@ def test_progress_bar(capsys):
assert
captured
.
err
==
""
,
"Progress bar should be disabled"
assert
captured
.
err
==
""
,
"Progress bar should be disabled"
class
PipelineFastTests
(
unittest
.
TestCase
):
@
property
def
dummy_image
(
self
):
batch_size
=
1
num_channels
=
3
sizes
=
(
32
,
32
)
image
=
floats_tensor
((
batch_size
,
num_channels
)
+
sizes
,
rng
=
random
.
Random
(
0
)).
to
(
torch_device
)
return
image
@
property
def
dummy_uncond_unet
(
self
):
torch
.
manual_seed
(
0
)
model
=
UNet2DModel
(
block_out_channels
=
(
32
,
64
),
layers_per_block
=
2
,
sample_size
=
32
,
in_channels
=
3
,
out_channels
=
3
,
down_block_types
=
(
"DownBlock2D"
,
"AttnDownBlock2D"
),
up_block_types
=
(
"AttnUpBlock2D"
,
"UpBlock2D"
),
)
return
model
@
property
def
dummy_cond_unet
(
self
):
torch
.
manual_seed
(
0
)
model
=
UNet2DConditionModel
(
block_out_channels
=
(
32
,
64
),
layers_per_block
=
2
,
sample_size
=
32
,
in_channels
=
4
,
out_channels
=
4
,
down_block_types
=
(
"DownBlock2D"
,
"CrossAttnDownBlock2D"
),
up_block_types
=
(
"CrossAttnUpBlock2D"
,
"UpBlock2D"
),
cross_attention_dim
=
32
,
)
return
model
@
property
def
dummy_vq_model
(
self
):
torch
.
manual_seed
(
0
)
model
=
VQModel
(
block_out_channels
=
[
32
,
64
],
in_channels
=
3
,
out_channels
=
3
,
down_block_types
=
[
"DownEncoderBlock2D"
,
"DownEncoderBlock2D"
],
up_block_types
=
[
"UpDecoderBlock2D"
,
"UpDecoderBlock2D"
],
latent_channels
=
3
,
)
return
model
@
property
def
dummy_vae
(
self
):
torch
.
manual_seed
(
0
)
model
=
AutoencoderKL
(
block_out_channels
=
[
32
,
64
],
in_channels
=
3
,
out_channels
=
3
,
down_block_types
=
[
"DownEncoderBlock2D"
,
"DownEncoderBlock2D"
],
up_block_types
=
[
"UpDecoderBlock2D"
,
"UpDecoderBlock2D"
],
latent_channels
=
4
,
)
return
model
@
property
def
dummy_text_encoder
(
self
):
torch
.
manual_seed
(
0
)
config
=
CLIPTextConfig
(
bos_token_id
=
0
,
chunk_size_feed_forward
=
0
,
eos_token_id
=
2
,
hidden_size
=
32
,
intermediate_size
=
37
,
layer_norm_eps
=
1e-05
,
num_attention_heads
=
4
,
num_hidden_layers
=
5
,
pad_token_id
=
1
,
vocab_size
=
1000
,
)
return
CLIPTextModel
(
config
)
@
property
def
dummy_safety_checker
(
self
):
def
check
(
images
,
*
args
,
**
kwargs
):
return
images
,
False
return
check
@
property
def
dummy_extractor
(
self
):
def
extract
(
*
args
,
**
kwargs
):
class
Out
:
def
__init__
(
self
):
self
.
pixel_values
=
torch
.
ones
([
0
])
def
to
(
self
,
device
):
self
.
pixel_values
.
to
(
device
)
return
self
return
Out
()
return
extract
def
test_ddim
(
self
):
unet
=
self
.
dummy_uncond_unet
scheduler
=
DDIMScheduler
(
tensor_format
=
"pt"
)
ddpm
=
DDIMPipeline
(
unet
=
unet
,
scheduler
=
scheduler
)
ddpm
.
to
(
torch_device
)
generator
=
torch
.
manual_seed
(
0
)
image
=
ddpm
(
generator
=
generator
,
num_inference_steps
=
2
,
output_type
=
"numpy"
)[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
32
,
32
,
3
)
expected_slice
=
np
.
array
(
[
1.000e00
,
5.717e-01
,
4.717e-01
,
1.000e00
,
0.000e00
,
1.000e00
,
3.000e-04
,
0.000e00
,
9.000e-04
]
)
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_pndm_cifar10
(
self
):
unet
=
self
.
dummy_uncond_unet
scheduler
=
PNDMScheduler
(
tensor_format
=
"pt"
)
pndm
=
PNDMPipeline
(
unet
=
unet
,
scheduler
=
scheduler
)
pndm
.
to
(
torch_device
)
generator
=
torch
.
manual_seed
(
0
)
image
=
pndm
(
generator
=
generator
,
num_inference_steps
=
20
,
output_type
=
"numpy"
)[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
32
,
32
,
3
)
expected_slice
=
np
.
array
([
1.0
,
1.0
,
0.0
,
1.0
,
0.0
,
1.0
,
0.0
,
0.0
,
0.0
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_ldm_text2img
(
self
):
unet
=
self
.
dummy_cond_unet
scheduler
=
DDIMScheduler
(
tensor_format
=
"pt"
)
vae
=
self
.
dummy_vae
bert
=
self
.
dummy_text_encoder
tokenizer
=
CLIPTokenizer
.
from_pretrained
(
"hf-internal-testing/tiny-random-clip"
)
ldm
=
LDMTextToImagePipeline
(
vqvae
=
vae
,
bert
=
bert
,
tokenizer
=
tokenizer
,
unet
=
unet
,
scheduler
=
scheduler
)
ldm
.
to
(
torch_device
)
prompt
=
"A painting of a squirrel eating a burger"
generator
=
torch
.
manual_seed
(
0
)
image
=
ldm
([
prompt
],
generator
=
generator
,
guidance_scale
=
6.0
,
num_inference_steps
=
2
,
output_type
=
"numpy"
)[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
64
,
64
,
3
)
expected_slice
=
np
.
array
([
0.5074
,
0.5026
,
0.4998
,
0.4056
,
0.3523
,
0.4649
,
0.5289
,
0.5299
,
0.4897
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_stable_diffusion_ddim
(
self
):
unet
=
self
.
dummy_cond_unet
scheduler
=
DDIMScheduler
(
beta_start
=
0.00085
,
beta_end
=
0.012
,
beta_schedule
=
"scaled_linear"
,
clip_sample
=
False
,
set_alpha_to_one
=
False
,
)
vae
=
self
.
dummy_vae
bert
=
self
.
dummy_text_encoder
tokenizer
=
CLIPTokenizer
.
from_pretrained
(
"hf-internal-testing/tiny-random-clip"
)
# make sure here that pndm scheduler skips prk
sd_pipe
=
StableDiffusionPipeline
(
unet
=
unet
,
scheduler
=
scheduler
,
vae
=
vae
,
text_encoder
=
bert
,
tokenizer
=
tokenizer
,
safety_checker
=
self
.
dummy_safety_checker
,
feature_extractor
=
self
.
dummy_extractor
,
)
sd_pipe
=
sd_pipe
.
to
(
torch_device
)
prompt
=
"A painting of a squirrel eating a burger"
generator
=
torch
.
Generator
(
device
=
torch_device
).
manual_seed
(
0
)
with
torch
.
autocast
(
"cuda"
):
output
=
sd_pipe
(
[
prompt
],
generator
=
generator
,
guidance_scale
=
6.0
,
num_inference_steps
=
2
,
output_type
=
"np"
)
image
=
output
[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
128
,
128
,
3
)
expected_slice
=
np
.
array
([
0.5112
,
0.4692
,
0.4715
,
0.5206
,
0.4894
,
0.5114
,
0.5096
,
0.4932
,
0.4755
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_stable_diffusion_pndm
(
self
):
unet
=
self
.
dummy_cond_unet
scheduler
=
PNDMScheduler
(
tensor_format
=
"pt"
,
skip_prk_steps
=
True
)
vae
=
self
.
dummy_vae
bert
=
self
.
dummy_text_encoder
tokenizer
=
CLIPTokenizer
.
from_pretrained
(
"hf-internal-testing/tiny-random-clip"
)
# make sure here that pndm scheduler skips prk
sd_pipe
=
StableDiffusionPipeline
(
unet
=
unet
,
scheduler
=
scheduler
,
vae
=
vae
,
text_encoder
=
bert
,
tokenizer
=
tokenizer
,
safety_checker
=
self
.
dummy_safety_checker
,
feature_extractor
=
self
.
dummy_extractor
,
)
sd_pipe
=
sd_pipe
.
to
(
torch_device
)
prompt
=
"A painting of a squirrel eating a burger"
generator
=
torch
.
Generator
(
device
=
torch_device
).
manual_seed
(
0
)
with
torch
.
autocast
(
"cuda"
):
output
=
sd_pipe
(
[
prompt
],
generator
=
generator
,
guidance_scale
=
6.0
,
num_inference_steps
=
2
,
output_type
=
"np"
)
image
=
output
[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
128
,
128
,
3
)
expected_slice
=
np
.
array
([
0.4937
,
0.4649
,
0.4716
,
0.5145
,
0.4889
,
0.513
,
0.513
,
0.4905
,
0.4738
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_stable_diffusion_k_lms
(
self
):
unet
=
self
.
dummy_cond_unet
scheduler
=
PNDMScheduler
(
tensor_format
=
"pt"
,
skip_prk_steps
=
True
)
scheduler
=
LMSDiscreteScheduler
(
beta_start
=
0.00085
,
beta_end
=
0.012
,
beta_schedule
=
"scaled_linear"
)
vae
=
self
.
dummy_vae
bert
=
self
.
dummy_text_encoder
tokenizer
=
CLIPTokenizer
.
from_pretrained
(
"hf-internal-testing/tiny-random-clip"
)
# make sure here that pndm scheduler skips prk
sd_pipe
=
StableDiffusionPipeline
(
unet
=
unet
,
scheduler
=
scheduler
,
vae
=
vae
,
text_encoder
=
bert
,
tokenizer
=
tokenizer
,
safety_checker
=
self
.
dummy_safety_checker
,
feature_extractor
=
self
.
dummy_extractor
,
)
sd_pipe
=
sd_pipe
.
to
(
torch_device
)
prompt
=
"A painting of a squirrel eating a burger"
generator
=
torch
.
Generator
(
device
=
torch_device
).
manual_seed
(
0
)
with
torch
.
autocast
(
"cuda"
):
output
=
sd_pipe
(
[
prompt
],
generator
=
generator
,
guidance_scale
=
6.0
,
num_inference_steps
=
2
,
output_type
=
"np"
)
image
=
output
[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
128
,
128
,
3
)
expected_slice
=
np
.
array
([
0.5067
,
0.4689
,
0.4614
,
0.5233
,
0.4903
,
0.5112
,
0.524
,
0.5069
,
0.4785
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_score_sde_ve_pipeline
(
self
):
unet
=
self
.
dummy_uncond_unet
scheduler
=
ScoreSdeVeScheduler
(
tensor_format
=
"pt"
)
sde_ve
=
ScoreSdeVePipeline
(
unet
=
unet
,
scheduler
=
scheduler
)
sde_ve
.
to
(
torch_device
)
torch
.
manual_seed
(
0
)
image
=
sde_ve
(
num_inference_steps
=
2
,
output_type
=
"numpy"
)[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
32
,
32
,
3
)
expected_slice
=
np
.
array
([
0.0
,
1.0
,
0.0
,
0.0
,
0.0
,
1.0
,
0.0
,
0.0
,
0.0
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_ldm_uncond
(
self
):
unet
=
self
.
dummy_uncond_unet
scheduler
=
DDIMScheduler
(
tensor_format
=
"pt"
)
vae
=
self
.
dummy_vq_model
ldm
=
LDMPipeline
(
unet
=
unet
,
vqvae
=
vae
,
scheduler
=
scheduler
)
ldm
.
to
(
torch_device
)
generator
=
torch
.
manual_seed
(
0
)
image
=
ldm
(
generator
=
generator
,
num_inference_steps
=
2
,
output_type
=
"numpy"
)[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
64
,
64
,
3
)
expected_slice
=
np
.
array
([
0.8512
,
0.818
,
0.6411
,
0.6808
,
0.4465
,
0.5618
,
0.46
,
0.6231
,
0.5172
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_karras_ve_pipeline
(
self
):
unet
=
self
.
dummy_uncond_unet
scheduler
=
KarrasVeScheduler
(
tensor_format
=
"pt"
)
pipe
=
KarrasVePipeline
(
unet
=
unet
,
scheduler
=
scheduler
)
pipe
.
to
(
torch_device
)
generator
=
torch
.
manual_seed
(
0
)
image
=
pipe
(
num_inference_steps
=
2
,
generator
=
generator
,
output_type
=
"numpy"
)[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
32
,
32
,
3
)
expected_slice
=
np
.
array
([
0.0
,
1.0
,
0.0
,
0.0
,
0.0
,
1.0
,
0.0
,
0.0
,
0.0
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_stable_diffusion_img2img
(
self
):
unet
=
self
.
dummy_cond_unet
scheduler
=
PNDMScheduler
(
tensor_format
=
"pt"
,
skip_prk_steps
=
True
)
vae
=
self
.
dummy_vae
bert
=
self
.
dummy_text_encoder
tokenizer
=
CLIPTokenizer
.
from_pretrained
(
"hf-internal-testing/tiny-random-clip"
)
init_image
=
self
.
dummy_image
# make sure here that pndm scheduler skips prk
sd_pipe
=
StableDiffusionImg2ImgPipeline
(
unet
=
unet
,
scheduler
=
scheduler
,
vae
=
vae
,
text_encoder
=
bert
,
tokenizer
=
tokenizer
,
safety_checker
=
self
.
dummy_safety_checker
,
feature_extractor
=
self
.
dummy_extractor
,
)
sd_pipe
=
sd_pipe
.
to
(
torch_device
)
prompt
=
"A painting of a squirrel eating a burger"
generator
=
torch
.
Generator
(
device
=
torch_device
).
manual_seed
(
0
)
with
torch
.
autocast
(
"cuda"
):
output
=
sd_pipe
(
[
prompt
],
generator
=
generator
,
guidance_scale
=
6.0
,
num_inference_steps
=
2
,
output_type
=
"np"
,
init_image
=
init_image
,
)
image
=
output
[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
32
,
32
,
3
)
expected_slice
=
np
.
array
([
0.4492
,
0.3865
,
0.4222
,
0.5854
,
0.5139
,
0.4379
,
0.4193
,
0.48
,
0.4218
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
def
test_stable_diffusion_inpaint
(
self
):
unet
=
self
.
dummy_cond_unet
scheduler
=
PNDMScheduler
(
tensor_format
=
"pt"
,
skip_prk_steps
=
True
)
vae
=
self
.
dummy_vae
bert
=
self
.
dummy_text_encoder
tokenizer
=
CLIPTokenizer
.
from_pretrained
(
"hf-internal-testing/tiny-random-clip"
)
image
=
self
.
dummy_image
.
permute
(
0
,
2
,
3
,
1
)[
0
]
init_image
=
Image
.
fromarray
(
np
.
uint8
(
image
)).
convert
(
"RGB"
)
mask_image
=
Image
.
fromarray
(
np
.
uint8
(
image
+
4
)).
convert
(
"RGB"
).
resize
((
128
,
128
))
# make sure here that pndm scheduler skips prk
sd_pipe
=
StableDiffusionInpaintPipeline
(
unet
=
unet
,
scheduler
=
scheduler
,
vae
=
vae
,
text_encoder
=
bert
,
tokenizer
=
tokenizer
,
safety_checker
=
self
.
dummy_safety_checker
,
feature_extractor
=
self
.
dummy_extractor
,
)
sd_pipe
=
sd_pipe
.
to
(
torch_device
)
prompt
=
"A painting of a squirrel eating a burger"
generator
=
torch
.
Generator
(
device
=
torch_device
).
manual_seed
(
0
)
with
torch
.
autocast
(
"cuda"
):
output
=
sd_pipe
(
[
prompt
],
generator
=
generator
,
guidance_scale
=
6.0
,
num_inference_steps
=
2
,
output_type
=
"np"
,
init_image
=
init_image
,
mask_image
=
mask_image
,
)
image
=
output
[
"sample"
]
image_slice
=
image
[
0
,
-
3
:,
-
3
:,
-
1
]
assert
image
.
shape
==
(
1
,
32
,
32
,
3
)
expected_slice
=
np
.
array
([
0.4731
,
0.5346
,
0.4531
,
0.6251
,
0.5446
,
0.4057
,
0.5527
,
0.5896
,
0.5153
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
class
PipelineTesterMixin
(
unittest
.
TestCase
):
class
PipelineTesterMixin
(
unittest
.
TestCase
):
def
test_from_pretrained_save_pretrained
(
self
):
def
test_from_pretrained_save_pretrained
(
self
):
# 1. Load models
# 1. Load models
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment