test_pipelines.py 21.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
20
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    PNDMScheduler,
33
    StableDiffusionImg2ImgPipeline,
34
    StableDiffusionInpaintPipelineLegacy,
35
    StableDiffusionPipeline,
36
    UNet2DConditionModel,
37
    UNet2DModel,
38
    VQModel,
39
    logging,
40
41
)
from diffusers.pipeline_utils import DiffusionPipeline
42
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
43
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
44
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, require_torch_gpu
45
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
46
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
47
48
49
50
51


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
52
53
54
55
56
57
58
59
60
61
62
63
64
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
65
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
66
67
68
69
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
70
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
71
72
73
74
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
class DownloadTests(unittest.TestCase):
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            _ = DiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)

90
91
92
93
94
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
95
96
97
98
99
100
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
101
102
103
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
104
105
        pipe_2 = pipe_2.to(torch_device)
        generator_2 = generator.manual_seed(0)
106
107
108
109
110
111
112
113
114
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator_2, output_type="numpy").images

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
115
116
117
118
119
120
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
121
122
123
124
125
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
126
127
            pipe_2 = pipe_2.to(torch_device)
            generator_2 = generator.manual_seed(0)
128
129
130
131
132
133
134
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator_2, output_type="numpy").images

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
135
136
137
138
139
140
        pipe = pipe.to(torch_device)
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
141
142
143
144
145
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
146
147
            pipe_2 = pipe_2.to(torch_device)
            generator_2 = generator.manual_seed(0)
148
149
150
151
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator_2, output_type="numpy").images

        assert np.max(np.abs(out - out_2)) < 1e-3

152

Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
156
157
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
158
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
159
160
161
162
163
164
165
166
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
167
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
168
169
170
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
171

Patrick von Platen's avatar
Patrick von Platen committed
172
173
174
175
176
177
178
179
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
180
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
181
182
183
184
185
186
187
188
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
189
    @require_torch_gpu
Patrick von Platen's avatar
Patrick von Platen committed
190
191
192
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

193
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
194
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
195
196
197
198
199
200

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
201
202
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
203
        )
204
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
205
206
207
208
209
210
211
212
213
214
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
class PipelineFastTests(unittest.TestCase):
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

326
327
    def test_components(self):
        """Test that components property works correctly"""
328
        unet = self.dummy_cond_unet
329
        scheduler = PNDMScheduler(skip_prk_steps=True)
330
331
332
333
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

334
335
336
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
337
338

        # make sure here that pndm scheduler skips prk
339
        inpaint = StableDiffusionInpaintPipelineLegacy(
340
341
342
343
344
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
345
            safety_checker=None,
346
            feature_extractor=self.dummy_extractor,
347
348
349
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
350
351

        prompt = "A painting of a squirrel eating a burger"
352
353
354
355
356
357
358

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

359
        image_inpaint = inpaint(
360
361
362
363
364
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
365
366
367
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
368
369
370
371
372
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
373
374
375
        ).images
        image_text2img = text2img(
            [prompt],
376
377
378
            generator=generator,
            num_inference_steps=2,
            output_type="np",
379
        ).images
380

381
382
383
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
        assert image_text2img.shape == (1, 128, 128, 3)
384

385

386
387
@slow
class PipelineSlowTests(unittest.TestCase):
388
389
390
391
392
393
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

394
395
396
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
397
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

415
416
417
418
419
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
420
                DiffusionPipeline.from_pretrained(
421
422
423
424
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
425
                )
426
427
428

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

429
430
431
432
433
434
435
436
437
438
439
440
441
442
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
443
        ddpm.to(torch_device)
444
        ddpm.set_progress_bar_config(disable=None)
445
446
447

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
448
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
449
            new_ddpm.to(torch_device)
450

451
        generator = torch.Generator(device=torch_device).manual_seed(0)
452
        image = ddpm(generator=generator, output_type="numpy").images
453

454
        generator = generator.manual_seed(0)
455
        new_image = new_ddpm(generator=generator, output_type="numpy").images
456
457
458
459
460
461

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

462
        scheduler = DDPMScheduler(num_train_timesteps=10)
463

464
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
465
        ddpm = ddpm.to(torch_device)
466
        ddpm.set_progress_bar_config(disable=None)
467

468
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
469
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
470
        ddpm_from_hub.set_progress_bar_config(disable=None)
471

472
        generator = torch.Generator(device=torch_device).manual_seed(0)
473
        image = ddpm(generator=generator, output_type="numpy").images
474

475
        generator = generator.manual_seed(0)
476
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
477
478
479
480
481
482

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

483
484
        scheduler = DDPMScheduler(num_train_timesteps=10)

485
        # pass unet into DiffusionPipeline
486
487
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
488
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
489
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
490

491
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
492
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
493
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
494

495
        generator = torch.Generator(device=torch_device).manual_seed(0)
496
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
497

498
        generator = generator.manual_seed(0)
499
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
500
501
502
503
504
505

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

Patrick von Platen's avatar
Patrick von Platen committed
506
507
        scheduler = DDIMScheduler.from_config(model_path)
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
508
        pipe.to(torch_device)
509
        pipe.set_progress_bar_config(disable=None)
510

511
        generator = torch.Generator(device=torch_device).manual_seed(0)
512
        images = pipe(generator=generator, output_type="numpy").images
513
514
515
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

Patrick von Platen's avatar
Patrick von Platen committed
516
        images = pipe(generator=generator, output_type="pil", num_inference_steps=4).images
517
518
519
520
521
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
Patrick von Platen's avatar
Patrick von Platen committed
522
        images = pipe(generator=generator, num_inference_steps=4).images
523
524
525
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

526
527
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
528
        model_id = "google/ddpm-cifar10-32"
529

530
        unet = UNet2DModel.from_pretrained(model_id)
531
532
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
533

534
535
536
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
537

538
539
540
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
541

542
543
        generator = torch.Generator(device=torch_device).manual_seed(seed)
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
544

545
        generator = torch.Generator(device=torch_device).manual_seed(seed)
546
        ddim_images = ddim(
547
            batch_size=2,
548
549
550
551
552
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
553
        ).images
554

555
556
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1