attention.py 52.3 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aryan's avatar
Aryan committed
14
from typing import Any, Dict, List, Optional, Tuple
15
16

import torch
Will Berman's avatar
Will Berman committed
17
import torch.nn.functional as F
18
19
from torch import nn

20
from ..utils import deprecate, logging
Dhruv Nair's avatar
Dhruv Nair committed
21
from ..utils.torch_utils import maybe_allow_in_graph
Aryan's avatar
Aryan committed
22
from .activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, LinearActivation, SwiGLU
Dhruv Nair's avatar
Dhruv Nair committed
23
from .attention_processor import Attention, JointAttnProcessor2_0
Dhruv Nair's avatar
Dhruv Nair committed
24
from .embeddings import SinusoidalPositionalEmbedding
YiYi Xu's avatar
YiYi Xu committed
25
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX
26
27


28
29
30
31
logger = logging.get_logger(__name__)


def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
Suraj Patil's avatar
Suraj Patil committed
32
33
34
35
36
37
38
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
39
40
41
42
    ff_output = torch.cat(
        [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
        dim=chunk_dim,
    )
Suraj Patil's avatar
Suraj Patil committed
43
44
45
    return ff_output


46
47
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
48
49
50
51
52
53
54
55
56
57
58
    r"""
    A gated self-attention dense layer that combines visual features and object features.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        context_dim (`int`): The number of channels in the context.
        n_heads (`int`): The number of heads to use for attention.
        d_head (`int`): The number of channels in each head.
    """

    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

75
    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
76
77
78
79
80
81
82
83
84
85
86
87
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


Dhruv Nair's avatar
Dhruv Nair committed
88
89
90
91
92
@maybe_allow_in_graph
class JointTransformerBlock(nn.Module):
    r"""
    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.

Quentin Gallouédec's avatar
Quentin Gallouédec committed
93
    Reference: https://huggingface.co/papers/2403.03206
Dhruv Nair's avatar
Dhruv Nair committed
94
95
96
97
98
99
100
101
102

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
            processing of `context` conditions.
    """

YiYi Xu's avatar
YiYi Xu committed
103
104
105
106
107
108
109
110
111
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        context_pre_only: bool = False,
        qk_norm: Optional[str] = None,
        use_dual_attention: bool = False,
    ):
Dhruv Nair's avatar
Dhruv Nair committed
112
113
        super().__init__()

YiYi Xu's avatar
YiYi Xu committed
114
        self.use_dual_attention = use_dual_attention
Dhruv Nair's avatar
Dhruv Nair committed
115
116
117
        self.context_pre_only = context_pre_only
        context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"

YiYi Xu's avatar
YiYi Xu committed
118
119
120
121
        if use_dual_attention:
            self.norm1 = SD35AdaLayerNormZeroX(dim)
        else:
            self.norm1 = AdaLayerNormZero(dim)
Dhruv Nair's avatar
Dhruv Nair committed
122
123
124
125
126
127
128
129
130
131
132

        if context_norm_type == "ada_norm_continous":
            self.norm1_context = AdaLayerNormContinuous(
                dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
            )
        elif context_norm_type == "ada_norm_zero":
            self.norm1_context = AdaLayerNormZero(dim)
        else:
            raise ValueError(
                f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
            )
YiYi Xu's avatar
YiYi Xu committed
133

Dhruv Nair's avatar
Dhruv Nair committed
134
135
136
137
138
139
        if hasattr(F, "scaled_dot_product_attention"):
            processor = JointAttnProcessor2_0()
        else:
            raise ValueError(
                "The current PyTorch version does not support the `scaled_dot_product_attention` function."
            )
YiYi Xu's avatar
YiYi Xu committed
140

Dhruv Nair's avatar
Dhruv Nair committed
141
142
143
144
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            added_kv_proj_dim=dim,
145
            dim_head=attention_head_dim,
Dhruv Nair's avatar
Dhruv Nair committed
146
            heads=num_attention_heads,
147
            out_dim=dim,
Dhruv Nair's avatar
Dhruv Nair committed
148
149
150
            context_pre_only=context_pre_only,
            bias=True,
            processor=processor,
YiYi Xu's avatar
YiYi Xu committed
151
152
            qk_norm=qk_norm,
            eps=1e-6,
Dhruv Nair's avatar
Dhruv Nair committed
153
154
        )

YiYi Xu's avatar
YiYi Xu committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        if use_dual_attention:
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=None,
                dim_head=attention_head_dim,
                heads=num_attention_heads,
                out_dim=dim,
                bias=True,
                processor=processor,
                qk_norm=qk_norm,
                eps=1e-6,
            )
        else:
            self.attn2 = None

Dhruv Nair's avatar
Dhruv Nair committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        if not context_pre_only:
            self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
            self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
        else:
            self.norm2_context = None
            self.ff_context = None

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
191
192
193
194
195
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor,
        temb: torch.FloatTensor,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
Dhruv Nair's avatar
Dhruv Nair committed
196
    ):
197
        joint_attention_kwargs = joint_attention_kwargs or {}
YiYi Xu's avatar
YiYi Xu committed
198
199
200
201
202
203
        if self.use_dual_attention:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
                hidden_states, emb=temb
            )
        else:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
Dhruv Nair's avatar
Dhruv Nair committed
204
205
206
207
208
209
210
211
212
213

        if self.context_pre_only:
            norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
        else:
            norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
                encoder_hidden_states, emb=temb
            )

        # Attention.
        attn_output, context_attn_output = self.attn(
214
215
216
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            **joint_attention_kwargs,
Dhruv Nair's avatar
Dhruv Nair committed
217
218
219
220
221
222
        )

        # Process attention outputs for the `hidden_states`.
        attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = hidden_states + attn_output

YiYi Xu's avatar
YiYi Xu committed
223
        if self.use_dual_attention:
224
            attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **joint_attention_kwargs)
YiYi Xu's avatar
YiYi Xu committed
225
226
227
            attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
            hidden_states = hidden_states + attn_output2

Dhruv Nair's avatar
Dhruv Nair committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = hidden_states + ff_output

        # Process attention outputs for the `encoder_hidden_states`.
        if self.context_pre_only:
            encoder_hidden_states = None
        else:
            context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
            encoder_hidden_states = encoder_hidden_states + context_attn_output

            norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
            norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
            if self._chunk_size is not None:
                # "feed_forward_chunk_size" can be used to save memory
                context_ff_output = _chunked_feed_forward(
                    self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
                )
            else:
                context_ff_output = self.ff_context(norm_encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output

        return encoder_hidden_states, hidden_states


260
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
261
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
262
263
264
265
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
266
267
268
269
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
270
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
271
272
273
274
275
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
Dhruv Nair's avatar
Dhruv Nair committed
290
291
292
293
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
Kashif Rasul's avatar
Kashif Rasul committed
294
295
296
297
298
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
299
300
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
301
        dropout=0.0,
Will Berman's avatar
Will Berman committed
302
303
304
305
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
306
        only_cross_attention: bool = False,
307
        double_self_attention: bool = False,
308
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
309
        norm_elementwise_affine: bool = True,
310
        norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
Sayak Paul's avatar
Sayak Paul committed
311
        norm_eps: float = 1e-5,
Kashif Rasul's avatar
Kashif Rasul committed
312
        final_dropout: bool = False,
313
        attention_type: str = "default",
Dhruv Nair's avatar
Dhruv Nair committed
314
315
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
Will Berman's avatar
Will Berman committed
316
317
318
319
320
        ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
        ada_norm_bias: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
321
    ):
Patrick von Platen's avatar
Patrick von Platen committed
322
        super().__init__()
Aryan's avatar
Aryan committed
323
324
325
326
327
328
329
330
331
332
333
        self.dim = dim
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.dropout = dropout
        self.cross_attention_dim = cross_attention_dim
        self.activation_fn = activation_fn
        self.attention_bias = attention_bias
        self.double_self_attention = double_self_attention
        self.norm_elementwise_affine = norm_elementwise_affine
        self.positional_embeddings = positional_embeddings
        self.num_positional_embeddings = num_positional_embeddings
334
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
335

336
        # We keep these boolean flags for backward-compatibility.
337
338
339
340
341
342
        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
        self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
        self.use_layer_norm = norm_type == "layer_norm"
        self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"

Kashif Rasul's avatar
Kashif Rasul committed
343
344
345
346
347
        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
348

349
350
351
        self.norm_type = norm_type
        self.num_embeds_ada_norm = num_embeds_ada_norm

Dhruv Nair's avatar
Dhruv Nair committed
352
353
354
355
356
357
358
359
360
361
        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

362
        # Define 3 blocks. Each block has its own normalization layer.
363
        # 1. Self-Attn
364
        if norm_type == "ada_norm":
365
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
366
        elif norm_type == "ada_norm_zero":
367
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
368
        elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
369
370
371
372
373
374
375
376
            self.norm1 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "rms_norm",
            )
377
        else:
Sayak Paul's avatar
Sayak Paul committed
378
379
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

Patrick von Platen's avatar
Patrick von Platen committed
380
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
381
382
383
384
385
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
386
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
387
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
388
            out_bias=attention_out_bias,
389
390
        )

391
        # 2. Cross-Attn
392
        if cross_attention_dim is not None or double_self_attention:
393
394
395
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
396
            if norm_type == "ada_norm":
Will Berman's avatar
Will Berman committed
397
                self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
398
            elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
399
400
401
402
403
404
405
406
407
408
409
                self.norm2 = AdaLayerNormContinuous(
                    dim,
                    ada_norm_continous_conditioning_embedding_dim,
                    norm_elementwise_affine,
                    norm_eps,
                    ada_norm_bias,
                    "rms_norm",
                )
            else:
                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

Patrick von Platen's avatar
Patrick von Platen committed
410
            self.attn2 = Attention(
411
                query_dim=dim,
412
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
413
414
415
416
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
417
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
418
                out_bias=attention_out_bias,
Will Berman's avatar
Will Berman committed
419
            )  # is self-attn if encoder_hidden_states is none
420
        else:
421
422
423
424
            if norm_type == "ada_norm_single":  # For Latte
                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
            else:
                self.norm2 = None
425
            self.attn2 = None
426
427

        # 3. Feed-forward
428
        if norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
429
430
431
432
433
434
435
436
            self.norm3 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "layer_norm",
            )
437

438
        elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
Will Berman's avatar
Will Berman committed
439
            self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
440
441
        elif norm_type == "layer_norm_i2vgen":
            self.norm3 = None
Sayak Paul's avatar
Sayak Paul committed
442

Suraj Patil's avatar
Suraj Patil committed
443
444
445
446
447
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
Will Berman's avatar
Will Berman committed
448
449
            inner_dim=ff_inner_dim,
            bias=ff_bias,
Suraj Patil's avatar
Suraj Patil committed
450
        )
Patrick von Platen's avatar
Patrick von Platen committed
451

452
        # 4. Fuser
453
        if attention_type == "gated" or attention_type == "gated-text-image":
454
455
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

Sayak Paul's avatar
Sayak Paul committed
456
        # 5. Scale-shift for PixArt-Alpha.
457
        if norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
458
459
            self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

460
461
462
463
        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

Suraj Patil's avatar
Suraj Patil committed
464
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
465
466
467
468
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

469
470
    def forward(
        self,
471
472
473
474
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
475
476
477
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
Will Berman's avatar
Will Berman committed
478
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
479
    ) -> torch.Tensor:
480
481
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
482
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
483

484
        # Notice that normalization is always applied before the real computation in the following blocks.
485
        # 0. Self-Attention
Sayak Paul's avatar
Sayak Paul committed
486
487
        batch_size = hidden_states.shape[0]

488
        if self.norm_type == "ada_norm":
Kashif Rasul's avatar
Kashif Rasul committed
489
            norm_hidden_states = self.norm1(hidden_states, timestep)
490
        elif self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
491
492
493
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
494
        elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
Kashif Rasul's avatar
Kashif Rasul committed
495
            norm_hidden_states = self.norm1(hidden_states)
496
        elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
497
            norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
498
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
499
500
501
502
503
504
505
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
            norm_hidden_states = self.norm1(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
        else:
            raise ValueError("Incorrect norm used")
Kashif Rasul's avatar
Kashif Rasul committed
506

Dhruv Nair's avatar
Dhruv Nair committed
507
508
509
        if self.pos_embed is not None:
            norm_hidden_states = self.pos_embed(norm_hidden_states)

510
        # 1. Prepare GLIGEN inputs
511
512
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
513

514
515
516
517
518
519
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
520

521
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
522
            attn_output = gate_msa.unsqueeze(1) * attn_output
523
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
524
525
            attn_output = gate_msa * attn_output

526
        hidden_states = attn_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
527
528
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
529

530
        # 1.2 GLIGEN Control
531
532
533
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

534
        # 3. Cross-Attention
535
        if self.attn2 is not None:
536
            if self.norm_type == "ada_norm":
Sayak Paul's avatar
Sayak Paul committed
537
                norm_hidden_states = self.norm2(hidden_states, timestep)
538
            elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
Sayak Paul's avatar
Sayak Paul committed
539
                norm_hidden_states = self.norm2(hidden_states)
540
            elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
541
542
543
                # For PixArt norm2 isn't applied here:
                # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                norm_hidden_states = hidden_states
544
            elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
545
                norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
Sayak Paul's avatar
Sayak Paul committed
546
547
548
            else:
                raise ValueError("Incorrect norm")

549
            if self.pos_embed is not None and self.norm_type != "ada_norm_single":
Dhruv Nair's avatar
Dhruv Nair committed
550
                norm_hidden_states = self.pos_embed(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
551

552
553
554
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
555
                attention_mask=encoder_attention_mask,
556
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
557
            )
558
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
559

560
        # 4. Feed-forward
561
562
        # i2vgen doesn't have this norm 🤷‍♂️
        if self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
563
            norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
564
        elif not self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
565
            norm_hidden_states = self.norm3(hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
566

567
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
568
569
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

570
        if self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
571
572
573
            norm_hidden_states = self.norm2(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

574
575
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
576
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
577
        else:
578
            ff_output = self.ff(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
579

580
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
581
            ff_output = gate_mlp.unsqueeze(1) * ff_output
582
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
583
            ff_output = gate_mlp * ff_output
Kashif Rasul's avatar
Kashif Rasul committed
584
585

        hidden_states = ff_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
586
587
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
588

589
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
590
591


592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
class LuminaFeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        hidden_size (`int`):
            The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
            hidden representations.
        intermediate_size (`int`): The intermediate dimension of the feedforward layer.
        multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
            of this value.
        ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
            dimension. Defaults to None.
    """

    def __init__(
        self,
        dim: int,
        inner_dim: int,
        multiple_of: Optional[int] = 256,
        ffn_dim_multiplier: Optional[float] = None,
    ):
        super().__init__()
        # custom hidden_size factor multiplier
        if ffn_dim_multiplier is not None:
            inner_dim = int(ffn_dim_multiplier * inner_dim)
        inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)

        self.linear_1 = nn.Linear(
            dim,
            inner_dim,
            bias=False,
        )
        self.linear_2 = nn.Linear(
            inner_dim,
            dim,
            bias=False,
        )
        self.linear_3 = nn.Linear(
            dim,
            inner_dim,
            bias=False,
        )
        self.silu = FP32SiLU()

    def forward(self, x):
        return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x))


Suraj Patil's avatar
Suraj Patil committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
@maybe_allow_in_graph
class TemporalBasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block for video like data.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        time_mix_inner_dim (`int`): The number of channels for temporal attention.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
    """

    def __init__(
        self,
        dim: int,
        time_mix_inner_dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        cross_attention_dim: Optional[int] = None,
    ):
        super().__init__()
        self.is_res = dim == time_mix_inner_dim

        self.norm_in = nn.LayerNorm(dim)

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.ff_in = FeedForward(
            dim,
            dim_out=time_mix_inner_dim,
            activation_fn="geglu",
        )

        self.norm1 = nn.LayerNorm(time_mix_inner_dim)
        self.attn1 = Attention(
            query_dim=time_mix_inner_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            cross_attention_dim=None,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None:
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = nn.LayerNorm(time_mix_inner_dim)
            self.attn2 = Attention(
                query_dim=time_mix_inner_dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(time_mix_inner_dim)
        self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = None

    def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
        self._chunk_dim = 1

    def forward(
        self,
715
        hidden_states: torch.Tensor,
Suraj Patil's avatar
Suraj Patil committed
716
        num_frames: int,
717
718
        encoder_hidden_states: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        batch_frames, seq_length, channels = hidden_states.shape
        batch_size = batch_frames // num_frames

        hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)

        residual = hidden_states
        hidden_states = self.norm_in(hidden_states)

        if self._chunk_size is not None:
Dhruv Nair's avatar
Dhruv Nair committed
734
            hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
Suraj Patil's avatar
Suraj Patil committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
        else:
            hidden_states = self.ff_in(hidden_states)

        if self.is_res:
            hidden_states = hidden_states + residual

        norm_hidden_states = self.norm1(hidden_states)
        attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
        hidden_states = attn_output + hidden_states

        # 3. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = self.norm2(hidden_states)
            attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self._chunk_size is not None:
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        if self.is_res:
            hidden_states = ff_output + hidden_states
        else:
            hidden_states = ff_output

        hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)

        return hidden_states


Will Berman's avatar
Will Berman committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
class SkipFFTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        kv_input_dim: int,
        kv_input_dim_proj_use_bias: bool,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        attention_out_bias: bool = True,
    ):
        super().__init__()
        if kv_input_dim != dim:
            self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
        else:
            self.kv_mapper = None

        self.norm1 = RMSNorm(dim, 1e-06)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim,
            out_bias=attention_out_bias,
        )

        self.norm2 = RMSNorm(dim, 1e-06)

        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            out_bias=attention_out_bias,
        )

    def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}

        if self.kv_mapper is not None:
            encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))

        norm_hidden_states = self.norm1(hidden_states)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        norm_hidden_states = self.norm2(hidden_states)

        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        return hidden_states


Aryan's avatar
Aryan committed
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
@maybe_allow_in_graph
class FreeNoiseTransformerBlock(nn.Module):
    r"""
    A FreeNoise Transformer block.

    Parameters:
        dim (`int`):
            The number of channels in the input and output.
        num_attention_heads (`int`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`):
            The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
        cross_attention_dim (`int`, *optional*):
            The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`):
            Activation function to be used in feed-forward.
        num_embeds_ada_norm (`int`, *optional*):
            The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (`bool`, defaults to `False`):
            Configure if the attentions should contain a bias parameter.
        only_cross_attention (`bool`, defaults to `False`):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, defaults to `False`):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, defaults to `False`):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` defaults to `False`):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
        positional_embeddings (`str`, *optional*):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
        ff_inner_dim (`int`, *optional*):
            Hidden dimension of feed-forward MLP.
        ff_bias (`bool`, defaults to `True`):
            Whether or not to use bias in feed-forward MLP.
        attention_out_bias (`bool`, defaults to `True`):
            Whether or not to use bias in attention output project layer.
        context_length (`int`, defaults to `16`):
            The maximum number of frames that the FreeNoise block processes at once.
        context_stride (`int`, defaults to `4`):
            The number of frames to be skipped before starting to process a new batch of `context_length` frames.
        weighting_scheme (`str`, defaults to `"pyramid"`):
            The weighting scheme to use for weighting averaging of processed latent frames. As described in the
Quentin Gallouédec's avatar
Quentin Gallouédec committed
895
896
            Equation 9. of the [FreeNoise](https://huggingface.co/papers/2310.15169) paper, "pyramid" is the default
            setting used.
Aryan's avatar
Aryan committed
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        norm_eps: float = 1e-5,
        final_dropout: bool = False,
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
        context_length: int = 16,
        context_stride: int = 4,
        weighting_scheme: str = "pyramid",
    ):
        super().__init__()
        self.dim = dim
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.dropout = dropout
        self.cross_attention_dim = cross_attention_dim
        self.activation_fn = activation_fn
        self.attention_bias = attention_bias
        self.double_self_attention = double_self_attention
        self.norm_elementwise_affine = norm_elementwise_affine
        self.positional_embeddings = positional_embeddings
        self.num_positional_embeddings = num_positional_embeddings
        self.only_cross_attention = only_cross_attention

        self.set_free_noise_properties(context_length, context_stride, weighting_scheme)

        # We keep these boolean flags for backward-compatibility.
        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
        self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
        self.use_layer_norm = norm_type == "layer_norm"
        self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )

        self.norm_type = norm_type
        self.num_embeds_ada_norm = num_embeds_ada_norm

        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
            out_bias=attention_out_bias,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None or double_self_attention:
            self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
                out_bias=attention_out_bias,
            )  # is self-attn if encoder_hidden_states is none

        # 3. Feed-forward
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
            inner_dim=ff_inner_dim,
            bias=ff_bias,
        )

        self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]:
        frame_indices = []
        for i in range(0, num_frames - self.context_length + 1, self.context_stride):
            window_start = i
            window_end = min(num_frames, i + self.context_length)
            frame_indices.append((window_start, window_end))
        return frame_indices

    def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
Aryan's avatar
Aryan committed
1022
1023
1024
1025
        if weighting_scheme == "flat":
            weights = [1.0] * num_frames

        elif weighting_scheme == "pyramid":
Aryan's avatar
Aryan committed
1026
1027
            if num_frames % 2 == 0:
                # num_frames = 4 => [1, 2, 2, 1]
Aryan's avatar
Aryan committed
1028
1029
                mid = num_frames // 2
                weights = list(range(1, mid + 1))
Aryan's avatar
Aryan committed
1030
1031
1032
                weights = weights + weights[::-1]
            else:
                # num_frames = 5 => [1, 2, 3, 2, 1]
Aryan's avatar
Aryan committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
                mid = (num_frames + 1) // 2
                weights = list(range(1, mid))
                weights = weights + [mid] + weights[::-1]

        elif weighting_scheme == "delayed_reverse_sawtooth":
            if num_frames % 2 == 0:
                # num_frames = 4 => [0.01, 2, 2, 1]
                mid = num_frames // 2
                weights = [0.01] * (mid - 1) + [mid]
                weights = weights + list(range(mid, 0, -1))
            else:
                # num_frames = 5 => [0.01, 0.01, 3, 2, 1]
                mid = (num_frames + 1) // 2
                weights = [0.01] * mid
                weights = weights + list(range(mid, 0, -1))
Aryan's avatar
Aryan committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
        else:
            raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")

        return weights

    def set_free_noise_properties(
        self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid"
    ) -> None:
        self.context_length = context_length
        self.context_stride = context_stride
        self.weighting_scheme = weighting_scheme

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None:
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}

        # hidden_states: [B x H x W, F, C]
        device = hidden_states.device
        dtype = hidden_states.dtype

        num_frames = hidden_states.size(1)
        frame_indices = self._get_frame_indices(num_frames)
        frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme)
        frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1)
        is_last_frame_batch_complete = frame_indices[-1][1] == num_frames

        # Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length
        # For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges:
        #    [(0, 16), (4, 20), (8, 24), (10, 26)]
        if not is_last_frame_batch_complete:
            if num_frames < self.context_length:
                raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}")
            last_frame_batch_length = num_frames - frame_indices[-1][1]
            frame_indices.append((num_frames - self.context_length, num_frames))

        num_times_accumulated = torch.zeros((1, num_frames, 1), device=device)
        accumulated_values = torch.zeros_like(hidden_states)

        for i, (frame_start, frame_end) in enumerate(frame_indices):
            # The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle
            # cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or
            # essentially a non-multiple of `context_length`.
            weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end])
            weights *= frame_weights

            hidden_states_chunk = hidden_states[:, frame_start:frame_end]

            # Notice that normalization is always applied before the real computation in the following blocks.
            # 1. Self-Attention
            norm_hidden_states = self.norm1(hidden_states_chunk)

            if self.pos_embed is not None:
                norm_hidden_states = self.pos_embed(norm_hidden_states)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                attention_mask=attention_mask,
                **cross_attention_kwargs,
            )

            hidden_states_chunk = attn_output + hidden_states_chunk
            if hidden_states_chunk.ndim == 4:
                hidden_states_chunk = hidden_states_chunk.squeeze(1)

            # 2. Cross-Attention
            if self.attn2 is not None:
                norm_hidden_states = self.norm2(hidden_states_chunk)

                if self.pos_embed is not None and self.norm_type != "ada_norm_single":
                    norm_hidden_states = self.pos_embed(norm_hidden_states)

                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )
                hidden_states_chunk = attn_output + hidden_states_chunk

            if i == len(frame_indices) - 1 and not is_last_frame_batch_complete:
                accumulated_values[:, -last_frame_batch_length:] += (
                    hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:]
                )
                num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length]
            else:
                accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights
                num_times_accumulated[:, frame_start:frame_end] += weights

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        # TODO(aryan): Maybe this could be done in a better way.
        #
        # Previously, this was:
        # hidden_states = torch.where(
        #    num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values
        # )
        #
        # The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory
        # spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes
        # from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly
        # looked into this deeply because other memory optimizations led to more pronounced reductions.
        hidden_states = torch.cat(
            [
                torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split)
                for accumulated_split, num_times_split in zip(
                    accumulated_values.split(self.context_length, dim=1),
                    num_times_accumulated.split(self.context_length, dim=1),
                )
            ],
            dim=1,
Aryan's avatar
Aryan committed
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
        ).to(dtype)

        # 3. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self._chunk_size is not None:
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1191
class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
1192
1193
1194
1195
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
1196
1197
1198
1199
1200
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
1201
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
1202
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
Kashif Rasul's avatar
Kashif Rasul committed
1203
1204
1205
    """

    def __init__(
Will Berman's avatar
Will Berman committed
1206
1207
1208
1209
1210
1211
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
1212
        final_dropout: bool = False,
Will Berman's avatar
Will Berman committed
1213
        inner_dim=None,
1214
        bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
1215
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1216
        super().__init__()
Will Berman's avatar
Will Berman committed
1217
1218
        if inner_dim is None:
            inner_dim = int(dim * mult)
1219
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
1220

1221
        if activation_fn == "gelu":
1222
            act_fn = GELU(dim, inner_dim, bias=bias)
Kashif Rasul's avatar
Kashif Rasul committed
1223
        if activation_fn == "gelu-approximate":
1224
            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
1225
        elif activation_fn == "geglu":
1226
            act_fn = GEGLU(dim, inner_dim, bias=bias)
Will Berman's avatar
Will Berman committed
1227
        elif activation_fn == "geglu-approximate":
1228
            act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
1229
1230
        elif activation_fn == "swiglu":
            act_fn = SwiGLU(dim, inner_dim, bias=bias)
Aryan's avatar
Aryan committed
1231
1232
        elif activation_fn == "linear-silu":
            act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu")
Will Berman's avatar
Will Berman committed
1233
1234

        self.net = nn.ModuleList([])
1235
        # project in
1236
        self.net.append(act_fn)
1237
1238
1239
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
1240
        self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
Kashif Rasul's avatar
Kashif Rasul committed
1241
1242
1243
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
1244

1245
1246
1247
1248
    def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
1249
        for module in self.net:
1250
            hidden_states = module(hidden_states)
1251
        return hidden_states