attention.py 38.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
import warnings
Will Berman's avatar
Will Berman committed
16
from dataclasses import dataclass
Kashif Rasul's avatar
Kashif Rasul committed
17
from typing import Optional
18
19

import torch
Patrick von Platen's avatar
Patrick von Platen committed
20
import torch.nn.functional as F
21
22
from torch import nn

Will Berman's avatar
Will Berman committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..models.embeddings import ImagePositionalEmbeddings
from ..utils import BaseOutput
from ..utils.import_utils import is_xformers_available


@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
            for the unnoised latent pixels.
    """

    sample: torch.FloatTensor
40
41
42
43
44
45
46
47


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

48

Will Berman's avatar
Will Berman committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
class Transformer2DModel(ModelMixin, ConfigMixin):
    """
    Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
    embeddings) inputs.

    When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
    transformer action. Finally, reshape to image.

    When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
    embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
    classes of unnoised image.

    Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
    image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
Suraj Patil's avatar
Suraj Patil committed
102
        use_linear_projection: bool = False,
103
        only_cross_attention: bool = False,
Will Berman's avatar
Will Berman committed
104
105
    ):
        super().__init__()
Suraj Patil's avatar
Suraj Patil committed
106
        self.use_linear_projection = use_linear_projection
Will Berman's avatar
Will Berman committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = in_channels is not None
        self.is_input_vectorized = num_vector_embeds is not None

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized:
            raise ValueError(
                f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is not None."
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
Suraj Patil's avatar
Suraj Patil committed
132
133
134
135
            if use_linear_projection:
                self.proj_in = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
Will Berman's avatar
Will Berman committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
161
                    only_cross_attention=only_cross_attention,
Will Berman's avatar
Will Berman committed
162
163
164
165
166
167
168
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        if self.is_input_continuous:
Suraj Patil's avatar
Suraj Patil committed
169
170
171
172
            if use_linear_projection:
                self.proj_out = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
Will Berman's avatar
Will Berman committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)

    def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        # 1. Input
        if self.is_input_continuous:
            batch, channel, height, weight = hidden_states.shape
            residual = hidden_states
Suraj Patil's avatar
Suraj Patil committed
200

Will Berman's avatar
Will Berman committed
201
            hidden_states = self.norm(hidden_states)
Suraj Patil's avatar
Suraj Patil committed
202
203
204
205
206
207
208
209
            if not self.use_linear_projection:
                hidden_states = self.proj_in(hidden_states)
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
            else:
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
                hidden_states = self.proj_in(hidden_states)
Will Berman's avatar
Will Berman committed
210
211
212
213
214
215
216
217
218
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)

        # 3. Output
        if self.is_input_continuous:
Suraj Patil's avatar
Suraj Patil committed
219
            if not self.use_linear_projection:
220
221
222
                hidden_states = (
                    hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
                )
Suraj Patil's avatar
Suraj Patil committed
223
224
225
                hidden_states = self.proj_out(hidden_states)
            else:
                hidden_states = self.proj_out(hidden_states)
226
227
228
                hidden_states = (
                    hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
                )
Suraj Patil's avatar
Suraj Patil committed
229

Will Berman's avatar
Will Berman committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)


246
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
247
248
249
250
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
251
252
253
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
254
255
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
256
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
257
258
259
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
263
    """

    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
264
265
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
266
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
267
268
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
269
270
271
272
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
273
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
274
        self.num_head_size = num_head_channels
Will Berman's avatar
Will Berman committed
275
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
276
277
278
279
280
281
282

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
283
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        self._use_memory_efficient_attention_xformers = False

    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        if not is_xformers_available():
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

Suraj Patil's avatar
Suraj Patil committed
311
312
313
314
315
316
317
318
319
320
321
322
323
    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor
Patrick von Platen's avatar
Patrick von Platen committed
324
325
326
327
328
329
330

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
331

Patrick von Platen's avatar
Patrick von Platen committed
332
333
334
335
336
337
338
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

339
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
340

Suraj Patil's avatar
Suraj Patil committed
341
342
343
344
        query_proj = self.reshape_heads_to_batch_dim(query_proj)
        key_proj = self.reshape_heads_to_batch_dim(key_proj)
        value_proj = self.reshape_heads_to_batch_dim(value_proj)

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        if self._use_memory_efficient_attention_xformers:
            # Memory efficient attention
            hidden_states = xformers.ops.memory_efficient_attention(query_proj, key_proj, value_proj, attn_bias=None)
            hidden_states = hidden_states.to(query_proj.dtype)
        else:
            attention_scores = torch.baddbmm(
                torch.empty(
                    query_proj.shape[0],
                    query_proj.shape[1],
                    key_proj.shape[1],
                    dtype=query_proj.dtype,
                    device=query_proj.device,
                ),
                query_proj,
                key_proj.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )
            attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
            hidden_states = torch.bmm(attention_probs, value_proj)
Patrick von Platen's avatar
Patrick von Platen committed
365

Suraj Patil's avatar
Suraj Patil committed
366
367
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
368
369

        # compute next hidden_states
370
        hidden_states = self.proj_attn(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
371
372
373
374
375
376
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
377

Patrick von Platen's avatar
Patrick von Platen committed
378
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
379
380
381
382
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
383
384
385
386
387
388
389
390
391
392
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
393
394
395
396
397
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
398
399
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
400
        dropout=0.0,
Will Berman's avatar
Will Berman committed
401
402
403
404
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
405
        only_cross_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
406
    ):
Patrick von Platen's avatar
Patrick von Platen committed
407
        super().__init__()
408
        self.only_cross_attention = only_cross_attention
409
410
411
        self.use_ada_layer_norm = num_embeds_ada_norm is not None

        # 1. Self-Attn
Patrick von Platen's avatar
Patrick von Platen committed
412
        self.attn1 = CrossAttention(
Will Berman's avatar
Will Berman committed
413
414
415
416
417
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
418
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
Patrick von Platen's avatar
Patrick von Platen committed
419
        )  # is a self-attention
Will Berman's avatar
Will Berman committed
420
421
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)

422
423
424
425
426
427
428
429
430
431
        # 2. Cross-Attn
        if cross_attention_dim is not None:
            self.attn2 = CrossAttention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
            )  # is self-attn if context is none
Will Berman's avatar
Will Berman committed
432
        else:
433
434
435
436
437
438
439
440
441
442
            self.attn2 = None

        self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)

        if cross_attention_dim is not None:
            self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
        else:
            self.norm2 = None

        # 3. Feed-forward
Patrick von Platen's avatar
Patrick von Platen committed
443
444
        self.norm3 = nn.LayerNorm(dim)

445
446
447
        # if xformers is installed try to use memory_efficient_attention by default
        if is_xformers_available():
            try:
448
                self.set_use_memory_efficient_attention_xformers(True)
449
450
451
452
453
454
            except Exception as e:
                warnings.warn(
                    "Could not enable memory efficient attention. Make sure xformers is installed"
                    f" correctly and a GPU is available: {e}"
                )

455
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        if not is_xformers_available():
            print("Here is how to install it")
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
            self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

Will Berman's avatar
Will Berman committed
481
482
483
484
485
    def forward(self, hidden_states, context=None, timestep=None):
        # 1. Self-Attention
        norm_hidden_states = (
            self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
        )
486
487
488
489
490

        if self.only_cross_attention:
            hidden_states = self.attn1(norm_hidden_states, context) + hidden_states
        else:
            hidden_states = self.attn1(norm_hidden_states) + hidden_states
Will Berman's avatar
Will Berman committed
491

492
493
494
495
496
497
        if self.attn2 is not None:
            # 2. Cross-Attention
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
            hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states
Will Berman's avatar
Will Berman committed
498
499

        # 3. Feed-forward
500
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
Will Berman's avatar
Will Berman committed
501

502
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
503
504
505


class CrossAttention(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
506
507
508
509
    r"""
    A cross attention layer.

    Parameters:
Will Berman's avatar
Will Berman committed
510
511
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
512
            The number of channels in the context. If not given, defaults to `query_dim`.
Will Berman's avatar
Will Berman committed
513
514
515
516
517
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
518
519
520
    """

    def __init__(
Will Berman's avatar
Will Berman committed
521
522
523
524
525
526
527
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
Kashif Rasul's avatar
Kashif Rasul committed
528
    ):
Patrick von Platen's avatar
Patrick von Platen committed
529
530
        super().__init__()
        inner_dim = dim_head * heads
Will Berman's avatar
Will Berman committed
531
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
532
533
534

        self.scale = dim_head**-0.5
        self.heads = heads
535
536
537
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
538
        self.sliceable_head_dim = heads
539
        self._slice_size = None
540
        self._use_memory_efficient_attention_xformers = False
Patrick von Platen's avatar
Patrick von Platen committed
541

Will Berman's avatar
Will Berman committed
542
543
544
        self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
        self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
        self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
Patrick von Platen's avatar
Patrick von Platen committed
545

546
547
548
        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        self.to_out.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

564
565
566
567
568
569
    def set_attention_slice(self, slice_size):
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        self._slice_size = slice_size

570
    def forward(self, hidden_states, context=None, mask=None):
571
        batch_size, sequence_length, _ = hidden_states.shape
Patrick von Platen's avatar
Patrick von Platen committed
572

573
574
575
576
        query = self.to_q(hidden_states)
        context = context if context is not None else hidden_states
        key = self.to_k(context)
        value = self.to_v(context)
Patrick von Platen's avatar
Patrick von Platen committed
577

578
579
        dim = query.shape[-1]

580
581
582
        query = self.reshape_heads_to_batch_dim(query)
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)
Patrick von Platen's avatar
Patrick von Platen committed
583

584
        # TODO(PVP) - mask is currently never used. Remember to re-implement when used
Patrick von Platen's avatar
Patrick von Platen committed
585
586

        # attention, what we cannot get enough of
587
588
        if self._use_memory_efficient_attention_xformers:
            hidden_states = self._memory_efficient_attention_xformers(query, key, value)
589
590
            # Some versions of xformers return output in fp32, cast it back to the dtype of the input
            hidden_states = hidden_states.to(query.dtype)
591
        else:
592
593
594
595
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value)
            else:
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
596

597
598
599
600
601
        # linear proj
        hidden_states = self.to_out[0](hidden_states)
        # dropout
        hidden_states = self.to_out[1](hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
602

603
    def _attention(self, query, key, value):
604
605
606
607
608
609
610
        attention_scores = torch.baddbmm(
            torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
            query,
            key.transpose(-1, -2),
            beta=0,
            alpha=self.scale,
        )
611
612
        attention_probs = attention_scores.softmax(dim=-1)
        # compute attention output
613

614
        hidden_states = torch.bmm(attention_probs, value)
615

616
617
618
619
620
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _sliced_attention(self, query, key, value, sequence_length, dim):
621
622
623
624
625
626
627
628
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size
629
630
631
632
633
634
635
            attn_slice = torch.baddbmm(
                torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
                query[start_idx:end_idx],
                key[start_idx:end_idx].transpose(-1, -2),
                beta=0,
                alpha=self.scale,
            )
636
            attn_slice = attn_slice.softmax(dim=-1)
637
            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
638
639
640
641
642
643

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
644
645

    def _memory_efficient_attention_xformers(self, query, key, value):
646
647
648
        query = query.contiguous()
        key = key.contiguous()
        value = value.contiguous()
649
650
651
        hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=None)
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
652
653
654


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
655
656
657
658
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
659
660
661
662
663
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
664
665
666
    """

    def __init__(
Will Berman's avatar
Will Berman committed
667
668
669
670
671
672
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
673
    ):
Patrick von Platen's avatar
Patrick von Platen committed
674
675
        super().__init__()
        inner_dim = int(dim * mult)
676
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
677

678
679
680
681
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
682
        elif activation_fn == "geglu-approximate":
683
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
684
685

        self.net = nn.ModuleList([])
686
        # project in
687
        self.net.append(act_fn)
688
689
690
691
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Patrick von Platen's avatar
Patrick von Platen committed
692

693
    def forward(self, hidden_states):
694
695
696
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
697

Patrick von Platen's avatar
Patrick von Platen committed
698

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
class GELU(nn.Module):
    r"""
    GELU activation function
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
720
721
# feedforward
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
722
723
724
725
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
726
727
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
728
729
730
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
731
732
733
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

734
735
736
737
738
739
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

740
741
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
742
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895


class DualTransformer2DModel(nn.Module):
    """
    Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
    ):
        super().__init__()
        self.transformers = nn.ModuleList(
            [
                Transformer2DModel(
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    in_channels=in_channels,
                    num_layers=num_layers,
                    dropout=dropout,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    attention_bias=attention_bias,
                    sample_size=sample_size,
                    num_vector_embeds=num_vector_embeds,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                )
                for _ in range(2)
            ]
        )

        # Variables that can be set by a pipeline:

        # The ratio of transformer1 to transformer2's output states to be combined during inference
        self.mix_ratio = 0.5

        # The shape of `encoder_hidden_states` is expected to be
        # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
        self.condition_lengths = [77, 257]

        # Which transformer to use to encode which condition.
        # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
        self.transformer_index_for_condition = [1, 0]

    def forward(self, hidden_states, encoder_hidden_states, timestep=None, return_dict: bool = True):
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        input_states = hidden_states

        encoded_states = []
        tokens_start = 0
        for i in range(2):
            # for each of the two transformers, pass the corresponding condition tokens
            condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
            transformer_index = self.transformer_index_for_condition[i]
            encoded_state = self.transformers[transformer_index](input_states, condition_state, timestep, return_dict)[
                0
            ]
            encoded_states.append(encoded_state - input_states)
            tokens_start += self.condition_lengths[i]

        output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
        output_states = output_states + input_states

        if not return_dict:
            return (output_states,)

        return Transformer2DModelOutput(sample=output_states)