attention.py 52.1 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aryan's avatar
Aryan committed
14
from typing import Any, Dict, List, Optional, Tuple
15
16

import torch
Will Berman's avatar
Will Berman committed
17
import torch.nn.functional as F
18
19
from torch import nn

20
from ..utils import deprecate, logging
Dhruv Nair's avatar
Dhruv Nair committed
21
from ..utils.torch_utils import maybe_allow_in_graph
Aryan's avatar
Aryan committed
22
from .activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, LinearActivation, SwiGLU
Dhruv Nair's avatar
Dhruv Nair committed
23
from .attention_processor import Attention, JointAttnProcessor2_0
Dhruv Nair's avatar
Dhruv Nair committed
24
from .embeddings import SinusoidalPositionalEmbedding
YiYi Xu's avatar
YiYi Xu committed
25
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX
26
27


28
29
30
31
logger = logging.get_logger(__name__)


def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
Suraj Patil's avatar
Suraj Patil committed
32
33
34
35
36
37
38
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
39
40
41
42
    ff_output = torch.cat(
        [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
        dim=chunk_dim,
    )
Suraj Patil's avatar
Suraj Patil committed
43
44
45
    return ff_output


46
47
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
48
49
50
51
52
53
54
55
56
57
58
    r"""
    A gated self-attention dense layer that combines visual features and object features.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        context_dim (`int`): The number of channels in the context.
        n_heads (`int`): The number of heads to use for attention.
        d_head (`int`): The number of channels in each head.
    """

    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

75
    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
76
77
78
79
80
81
82
83
84
85
86
87
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


Dhruv Nair's avatar
Dhruv Nair committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
@maybe_allow_in_graph
class JointTransformerBlock(nn.Module):
    r"""
    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.

    Reference: https://arxiv.org/abs/2403.03206

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
            processing of `context` conditions.
    """

YiYi Xu's avatar
YiYi Xu committed
103
104
105
106
107
108
109
110
111
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        context_pre_only: bool = False,
        qk_norm: Optional[str] = None,
        use_dual_attention: bool = False,
    ):
Dhruv Nair's avatar
Dhruv Nair committed
112
113
        super().__init__()

YiYi Xu's avatar
YiYi Xu committed
114
        self.use_dual_attention = use_dual_attention
Dhruv Nair's avatar
Dhruv Nair committed
115
116
117
        self.context_pre_only = context_pre_only
        context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"

YiYi Xu's avatar
YiYi Xu committed
118
119
120
121
        if use_dual_attention:
            self.norm1 = SD35AdaLayerNormZeroX(dim)
        else:
            self.norm1 = AdaLayerNormZero(dim)
Dhruv Nair's avatar
Dhruv Nair committed
122
123
124
125
126
127
128
129
130
131
132

        if context_norm_type == "ada_norm_continous":
            self.norm1_context = AdaLayerNormContinuous(
                dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
            )
        elif context_norm_type == "ada_norm_zero":
            self.norm1_context = AdaLayerNormZero(dim)
        else:
            raise ValueError(
                f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
            )
YiYi Xu's avatar
YiYi Xu committed
133

Dhruv Nair's avatar
Dhruv Nair committed
134
135
136
137
138
139
        if hasattr(F, "scaled_dot_product_attention"):
            processor = JointAttnProcessor2_0()
        else:
            raise ValueError(
                "The current PyTorch version does not support the `scaled_dot_product_attention` function."
            )
YiYi Xu's avatar
YiYi Xu committed
140

Dhruv Nair's avatar
Dhruv Nair committed
141
142
143
144
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            added_kv_proj_dim=dim,
145
            dim_head=attention_head_dim,
Dhruv Nair's avatar
Dhruv Nair committed
146
            heads=num_attention_heads,
147
            out_dim=dim,
Dhruv Nair's avatar
Dhruv Nair committed
148
149
150
            context_pre_only=context_pre_only,
            bias=True,
            processor=processor,
YiYi Xu's avatar
YiYi Xu committed
151
152
            qk_norm=qk_norm,
            eps=1e-6,
Dhruv Nair's avatar
Dhruv Nair committed
153
154
        )

YiYi Xu's avatar
YiYi Xu committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        if use_dual_attention:
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=None,
                dim_head=attention_head_dim,
                heads=num_attention_heads,
                out_dim=dim,
                bias=True,
                processor=processor,
                qk_norm=qk_norm,
                eps=1e-6,
            )
        else:
            self.attn2 = None

Dhruv Nair's avatar
Dhruv Nair committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        if not context_pre_only:
            self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
            self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
        else:
            self.norm2_context = None
            self.ff_context = None

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor
    ):
YiYi Xu's avatar
YiYi Xu committed
193
194
195
196
197
198
        if self.use_dual_attention:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
                hidden_states, emb=temb
            )
        else:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
Dhruv Nair's avatar
Dhruv Nair committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        if self.context_pre_only:
            norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
        else:
            norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
                encoder_hidden_states, emb=temb
            )

        # Attention.
        attn_output, context_attn_output = self.attn(
            hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states
        )

        # Process attention outputs for the `hidden_states`.
        attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = hidden_states + attn_output

YiYi Xu's avatar
YiYi Xu committed
216
217
218
219
220
        if self.use_dual_attention:
            attn_output2 = self.attn2(hidden_states=norm_hidden_states2)
            attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
            hidden_states = hidden_states + attn_output2

Dhruv Nair's avatar
Dhruv Nair committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = hidden_states + ff_output

        # Process attention outputs for the `encoder_hidden_states`.
        if self.context_pre_only:
            encoder_hidden_states = None
        else:
            context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
            encoder_hidden_states = encoder_hidden_states + context_attn_output

            norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
            norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
            if self._chunk_size is not None:
                # "feed_forward_chunk_size" can be used to save memory
                context_ff_output = _chunked_feed_forward(
                    self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
                )
            else:
                context_ff_output = self.ff_context(norm_encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output

        return encoder_hidden_states, hidden_states


253
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
254
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
255
256
257
258
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
259
260
261
262
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
263
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
264
265
266
267
268
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
Dhruv Nair's avatar
Dhruv Nair committed
283
284
285
286
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
Kashif Rasul's avatar
Kashif Rasul committed
287
288
289
290
291
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
292
293
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
294
        dropout=0.0,
Will Berman's avatar
Will Berman committed
295
296
297
298
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
299
        only_cross_attention: bool = False,
300
        double_self_attention: bool = False,
301
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
302
        norm_elementwise_affine: bool = True,
303
        norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
Sayak Paul's avatar
Sayak Paul committed
304
        norm_eps: float = 1e-5,
Kashif Rasul's avatar
Kashif Rasul committed
305
        final_dropout: bool = False,
306
        attention_type: str = "default",
Dhruv Nair's avatar
Dhruv Nair committed
307
308
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
Will Berman's avatar
Will Berman committed
309
310
311
312
313
        ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
        ada_norm_bias: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
314
    ):
Patrick von Platen's avatar
Patrick von Platen committed
315
        super().__init__()
Aryan's avatar
Aryan committed
316
317
318
319
320
321
322
323
324
325
326
        self.dim = dim
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.dropout = dropout
        self.cross_attention_dim = cross_attention_dim
        self.activation_fn = activation_fn
        self.attention_bias = attention_bias
        self.double_self_attention = double_self_attention
        self.norm_elementwise_affine = norm_elementwise_affine
        self.positional_embeddings = positional_embeddings
        self.num_positional_embeddings = num_positional_embeddings
327
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
328

329
        # We keep these boolean flags for backward-compatibility.
330
331
332
333
334
335
        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
        self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
        self.use_layer_norm = norm_type == "layer_norm"
        self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"

Kashif Rasul's avatar
Kashif Rasul committed
336
337
338
339
340
        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
341

342
343
344
        self.norm_type = norm_type
        self.num_embeds_ada_norm = num_embeds_ada_norm

Dhruv Nair's avatar
Dhruv Nair committed
345
346
347
348
349
350
351
352
353
354
        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

355
        # Define 3 blocks. Each block has its own normalization layer.
356
        # 1. Self-Attn
357
        if norm_type == "ada_norm":
358
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
359
        elif norm_type == "ada_norm_zero":
360
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
361
        elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
362
363
364
365
366
367
368
369
            self.norm1 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "rms_norm",
            )
370
        else:
Sayak Paul's avatar
Sayak Paul committed
371
372
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

Patrick von Platen's avatar
Patrick von Platen committed
373
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
374
375
376
377
378
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
379
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
380
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
381
            out_bias=attention_out_bias,
382
383
        )

384
        # 2. Cross-Attn
385
        if cross_attention_dim is not None or double_self_attention:
386
387
388
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
389
            if norm_type == "ada_norm":
Will Berman's avatar
Will Berman committed
390
                self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
391
            elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
392
393
394
395
396
397
398
399
400
401
402
                self.norm2 = AdaLayerNormContinuous(
                    dim,
                    ada_norm_continous_conditioning_embedding_dim,
                    norm_elementwise_affine,
                    norm_eps,
                    ada_norm_bias,
                    "rms_norm",
                )
            else:
                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

Patrick von Platen's avatar
Patrick von Platen committed
403
            self.attn2 = Attention(
404
                query_dim=dim,
405
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
406
407
408
409
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
410
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
411
                out_bias=attention_out_bias,
Will Berman's avatar
Will Berman committed
412
            )  # is self-attn if encoder_hidden_states is none
413
        else:
414
415
416
417
            if norm_type == "ada_norm_single":  # For Latte
                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
            else:
                self.norm2 = None
418
            self.attn2 = None
419
420

        # 3. Feed-forward
421
        if norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
422
423
424
425
426
427
428
429
            self.norm3 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "layer_norm",
            )
430

431
        elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
Will Berman's avatar
Will Berman committed
432
            self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
433
434
        elif norm_type == "layer_norm_i2vgen":
            self.norm3 = None
Sayak Paul's avatar
Sayak Paul committed
435

Suraj Patil's avatar
Suraj Patil committed
436
437
438
439
440
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
Will Berman's avatar
Will Berman committed
441
442
            inner_dim=ff_inner_dim,
            bias=ff_bias,
Suraj Patil's avatar
Suraj Patil committed
443
        )
Patrick von Platen's avatar
Patrick von Platen committed
444

445
        # 4. Fuser
446
        if attention_type == "gated" or attention_type == "gated-text-image":
447
448
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

Sayak Paul's avatar
Sayak Paul committed
449
        # 5. Scale-shift for PixArt-Alpha.
450
        if norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
451
452
            self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

453
454
455
456
        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

Suraj Patil's avatar
Suraj Patil committed
457
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
458
459
460
461
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

462
463
    def forward(
        self,
464
465
466
467
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
468
469
470
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
Will Berman's avatar
Will Berman committed
471
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
472
    ) -> torch.Tensor:
473
474
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
475
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
476

477
        # Notice that normalization is always applied before the real computation in the following blocks.
478
        # 0. Self-Attention
Sayak Paul's avatar
Sayak Paul committed
479
480
        batch_size = hidden_states.shape[0]

481
        if self.norm_type == "ada_norm":
Kashif Rasul's avatar
Kashif Rasul committed
482
            norm_hidden_states = self.norm1(hidden_states, timestep)
483
        elif self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
484
485
486
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
487
        elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
Kashif Rasul's avatar
Kashif Rasul committed
488
            norm_hidden_states = self.norm1(hidden_states)
489
        elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
490
            norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
491
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
492
493
494
495
496
497
498
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
            norm_hidden_states = self.norm1(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
        else:
            raise ValueError("Incorrect norm used")
Kashif Rasul's avatar
Kashif Rasul committed
499

Dhruv Nair's avatar
Dhruv Nair committed
500
501
502
        if self.pos_embed is not None:
            norm_hidden_states = self.pos_embed(norm_hidden_states)

503
        # 1. Prepare GLIGEN inputs
504
505
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
506

507
508
509
510
511
512
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
513

514
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
515
            attn_output = gate_msa.unsqueeze(1) * attn_output
516
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
517
518
            attn_output = gate_msa * attn_output

519
        hidden_states = attn_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
520
521
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
522

523
        # 1.2 GLIGEN Control
524
525
526
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

527
        # 3. Cross-Attention
528
        if self.attn2 is not None:
529
            if self.norm_type == "ada_norm":
Sayak Paul's avatar
Sayak Paul committed
530
                norm_hidden_states = self.norm2(hidden_states, timestep)
531
            elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
Sayak Paul's avatar
Sayak Paul committed
532
                norm_hidden_states = self.norm2(hidden_states)
533
            elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
534
535
536
                # For PixArt norm2 isn't applied here:
                # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                norm_hidden_states = hidden_states
537
            elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
538
                norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
Sayak Paul's avatar
Sayak Paul committed
539
540
541
            else:
                raise ValueError("Incorrect norm")

542
            if self.pos_embed is not None and self.norm_type != "ada_norm_single":
Dhruv Nair's avatar
Dhruv Nair committed
543
                norm_hidden_states = self.pos_embed(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
544

545
546
547
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
548
                attention_mask=encoder_attention_mask,
549
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
550
            )
551
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
552

553
        # 4. Feed-forward
554
555
        # i2vgen doesn't have this norm 🤷‍♂️
        if self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
556
            norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
557
        elif not self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
558
            norm_hidden_states = self.norm3(hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
559

560
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
561
562
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

563
        if self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
564
565
566
            norm_hidden_states = self.norm2(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

567
568
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
569
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
570
        else:
571
            ff_output = self.ff(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
572

573
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
574
            ff_output = gate_mlp.unsqueeze(1) * ff_output
575
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
576
            ff_output = gate_mlp * ff_output
Kashif Rasul's avatar
Kashif Rasul committed
577
578

        hidden_states = ff_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
579
580
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
581

582
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
583
584


585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
class LuminaFeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        hidden_size (`int`):
            The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
            hidden representations.
        intermediate_size (`int`): The intermediate dimension of the feedforward layer.
        multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
            of this value.
        ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
            dimension. Defaults to None.
    """

    def __init__(
        self,
        dim: int,
        inner_dim: int,
        multiple_of: Optional[int] = 256,
        ffn_dim_multiplier: Optional[float] = None,
    ):
        super().__init__()
        inner_dim = int(2 * inner_dim / 3)
        # custom hidden_size factor multiplier
        if ffn_dim_multiplier is not None:
            inner_dim = int(ffn_dim_multiplier * inner_dim)
        inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)

        self.linear_1 = nn.Linear(
            dim,
            inner_dim,
            bias=False,
        )
        self.linear_2 = nn.Linear(
            inner_dim,
            dim,
            bias=False,
        )
        self.linear_3 = nn.Linear(
            dim,
            inner_dim,
            bias=False,
        )
        self.silu = FP32SiLU()

    def forward(self, x):
        return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x))


Suraj Patil's avatar
Suraj Patil committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
@maybe_allow_in_graph
class TemporalBasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block for video like data.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        time_mix_inner_dim (`int`): The number of channels for temporal attention.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
    """

    def __init__(
        self,
        dim: int,
        time_mix_inner_dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        cross_attention_dim: Optional[int] = None,
    ):
        super().__init__()
        self.is_res = dim == time_mix_inner_dim

        self.norm_in = nn.LayerNorm(dim)

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.ff_in = FeedForward(
            dim,
            dim_out=time_mix_inner_dim,
            activation_fn="geglu",
        )

        self.norm1 = nn.LayerNorm(time_mix_inner_dim)
        self.attn1 = Attention(
            query_dim=time_mix_inner_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            cross_attention_dim=None,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None:
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = nn.LayerNorm(time_mix_inner_dim)
            self.attn2 = Attention(
                query_dim=time_mix_inner_dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(time_mix_inner_dim)
        self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = None

    def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
        self._chunk_dim = 1

    def forward(
        self,
709
        hidden_states: torch.Tensor,
Suraj Patil's avatar
Suraj Patil committed
710
        num_frames: int,
711
712
        encoder_hidden_states: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        batch_frames, seq_length, channels = hidden_states.shape
        batch_size = batch_frames // num_frames

        hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)

        residual = hidden_states
        hidden_states = self.norm_in(hidden_states)

        if self._chunk_size is not None:
Dhruv Nair's avatar
Dhruv Nair committed
728
            hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
Suraj Patil's avatar
Suraj Patil committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
        else:
            hidden_states = self.ff_in(hidden_states)

        if self.is_res:
            hidden_states = hidden_states + residual

        norm_hidden_states = self.norm1(hidden_states)
        attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
        hidden_states = attn_output + hidden_states

        # 3. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = self.norm2(hidden_states)
            attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self._chunk_size is not None:
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        if self.is_res:
            hidden_states = ff_output + hidden_states
        else:
            hidden_states = ff_output

        hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)

        return hidden_states


Will Berman's avatar
Will Berman committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
class SkipFFTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        kv_input_dim: int,
        kv_input_dim_proj_use_bias: bool,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        attention_out_bias: bool = True,
    ):
        super().__init__()
        if kv_input_dim != dim:
            self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
        else:
            self.kv_mapper = None

        self.norm1 = RMSNorm(dim, 1e-06)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim,
            out_bias=attention_out_bias,
        )

        self.norm2 = RMSNorm(dim, 1e-06)

        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            out_bias=attention_out_bias,
        )

    def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}

        if self.kv_mapper is not None:
            encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))

        norm_hidden_states = self.norm1(hidden_states)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        norm_hidden_states = self.norm2(hidden_states)

        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        return hidden_states


Aryan's avatar
Aryan committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
@maybe_allow_in_graph
class FreeNoiseTransformerBlock(nn.Module):
    r"""
    A FreeNoise Transformer block.

    Parameters:
        dim (`int`):
            The number of channels in the input and output.
        num_attention_heads (`int`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`):
            The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
        cross_attention_dim (`int`, *optional*):
            The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`):
            Activation function to be used in feed-forward.
        num_embeds_ada_norm (`int`, *optional*):
            The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (`bool`, defaults to `False`):
            Configure if the attentions should contain a bias parameter.
        only_cross_attention (`bool`, defaults to `False`):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, defaults to `False`):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, defaults to `False`):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` defaults to `False`):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
        positional_embeddings (`str`, *optional*):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
        ff_inner_dim (`int`, *optional*):
            Hidden dimension of feed-forward MLP.
        ff_bias (`bool`, defaults to `True`):
            Whether or not to use bias in feed-forward MLP.
        attention_out_bias (`bool`, defaults to `True`):
            Whether or not to use bias in attention output project layer.
        context_length (`int`, defaults to `16`):
            The maximum number of frames that the FreeNoise block processes at once.
        context_stride (`int`, defaults to `4`):
            The number of frames to be skipped before starting to process a new batch of `context_length` frames.
        weighting_scheme (`str`, defaults to `"pyramid"`):
            The weighting scheme to use for weighting averaging of processed latent frames. As described in the
            Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting
            used.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        norm_eps: float = 1e-5,
        final_dropout: bool = False,
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
        context_length: int = 16,
        context_stride: int = 4,
        weighting_scheme: str = "pyramid",
    ):
        super().__init__()
        self.dim = dim
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.dropout = dropout
        self.cross_attention_dim = cross_attention_dim
        self.activation_fn = activation_fn
        self.attention_bias = attention_bias
        self.double_self_attention = double_self_attention
        self.norm_elementwise_affine = norm_elementwise_affine
        self.positional_embeddings = positional_embeddings
        self.num_positional_embeddings = num_positional_embeddings
        self.only_cross_attention = only_cross_attention

        self.set_free_noise_properties(context_length, context_stride, weighting_scheme)

        # We keep these boolean flags for backward-compatibility.
        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
        self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
        self.use_layer_norm = norm_type == "layer_norm"
        self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )

        self.norm_type = norm_type
        self.num_embeds_ada_norm = num_embeds_ada_norm

        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
            out_bias=attention_out_bias,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None or double_self_attention:
            self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
                out_bias=attention_out_bias,
            )  # is self-attn if encoder_hidden_states is none

        # 3. Feed-forward
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
            inner_dim=ff_inner_dim,
            bias=ff_bias,
        )

        self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]:
        frame_indices = []
        for i in range(0, num_frames - self.context_length + 1, self.context_stride):
            window_start = i
            window_end = min(num_frames, i + self.context_length)
            frame_indices.append((window_start, window_end))
        return frame_indices

    def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
Aryan's avatar
Aryan committed
1016
1017
1018
1019
        if weighting_scheme == "flat":
            weights = [1.0] * num_frames

        elif weighting_scheme == "pyramid":
Aryan's avatar
Aryan committed
1020
1021
            if num_frames % 2 == 0:
                # num_frames = 4 => [1, 2, 2, 1]
Aryan's avatar
Aryan committed
1022
1023
                mid = num_frames // 2
                weights = list(range(1, mid + 1))
Aryan's avatar
Aryan committed
1024
1025
1026
                weights = weights + weights[::-1]
            else:
                # num_frames = 5 => [1, 2, 3, 2, 1]
Aryan's avatar
Aryan committed
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
                mid = (num_frames + 1) // 2
                weights = list(range(1, mid))
                weights = weights + [mid] + weights[::-1]

        elif weighting_scheme == "delayed_reverse_sawtooth":
            if num_frames % 2 == 0:
                # num_frames = 4 => [0.01, 2, 2, 1]
                mid = num_frames // 2
                weights = [0.01] * (mid - 1) + [mid]
                weights = weights + list(range(mid, 0, -1))
            else:
                # num_frames = 5 => [0.01, 0.01, 3, 2, 1]
                mid = (num_frames + 1) // 2
                weights = [0.01] * mid
                weights = weights + list(range(mid, 0, -1))
Aryan's avatar
Aryan committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
        else:
            raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")

        return weights

    def set_free_noise_properties(
        self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid"
    ) -> None:
        self.context_length = context_length
        self.context_stride = context_stride
        self.weighting_scheme = weighting_scheme

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None:
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}

        # hidden_states: [B x H x W, F, C]
        device = hidden_states.device
        dtype = hidden_states.dtype

        num_frames = hidden_states.size(1)
        frame_indices = self._get_frame_indices(num_frames)
        frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme)
        frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1)
        is_last_frame_batch_complete = frame_indices[-1][1] == num_frames

        # Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length
        # For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges:
        #    [(0, 16), (4, 20), (8, 24), (10, 26)]
        if not is_last_frame_batch_complete:
            if num_frames < self.context_length:
                raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}")
            last_frame_batch_length = num_frames - frame_indices[-1][1]
            frame_indices.append((num_frames - self.context_length, num_frames))

        num_times_accumulated = torch.zeros((1, num_frames, 1), device=device)
        accumulated_values = torch.zeros_like(hidden_states)

        for i, (frame_start, frame_end) in enumerate(frame_indices):
            # The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle
            # cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or
            # essentially a non-multiple of `context_length`.
            weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end])
            weights *= frame_weights

            hidden_states_chunk = hidden_states[:, frame_start:frame_end]

            # Notice that normalization is always applied before the real computation in the following blocks.
            # 1. Self-Attention
            norm_hidden_states = self.norm1(hidden_states_chunk)

            if self.pos_embed is not None:
                norm_hidden_states = self.pos_embed(norm_hidden_states)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                attention_mask=attention_mask,
                **cross_attention_kwargs,
            )

            hidden_states_chunk = attn_output + hidden_states_chunk
            if hidden_states_chunk.ndim == 4:
                hidden_states_chunk = hidden_states_chunk.squeeze(1)

            # 2. Cross-Attention
            if self.attn2 is not None:
                norm_hidden_states = self.norm2(hidden_states_chunk)

                if self.pos_embed is not None and self.norm_type != "ada_norm_single":
                    norm_hidden_states = self.pos_embed(norm_hidden_states)

                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )
                hidden_states_chunk = attn_output + hidden_states_chunk

            if i == len(frame_indices) - 1 and not is_last_frame_batch_complete:
                accumulated_values[:, -last_frame_batch_length:] += (
                    hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:]
                )
                num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length]
            else:
                accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights
                num_times_accumulated[:, frame_start:frame_end] += weights

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
        # TODO(aryan): Maybe this could be done in a better way.
        #
        # Previously, this was:
        # hidden_states = torch.where(
        #    num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values
        # )
        #
        # The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory
        # spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes
        # from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly
        # looked into this deeply because other memory optimizations led to more pronounced reductions.
        hidden_states = torch.cat(
            [
                torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split)
                for accumulated_split, num_times_split in zip(
                    accumulated_values.split(self.context_length, dim=1),
                    num_times_accumulated.split(self.context_length, dim=1),
                )
            ],
            dim=1,
Aryan's avatar
Aryan committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
        ).to(dtype)

        # 3. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self._chunk_size is not None:
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1185
class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
1186
1187
1188
1189
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
1190
1191
1192
1193
1194
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
1195
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
1196
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
Kashif Rasul's avatar
Kashif Rasul committed
1197
1198
1199
    """

    def __init__(
Will Berman's avatar
Will Berman committed
1200
1201
1202
1203
1204
1205
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
1206
        final_dropout: bool = False,
Will Berman's avatar
Will Berman committed
1207
        inner_dim=None,
1208
        bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
1209
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1210
        super().__init__()
Will Berman's avatar
Will Berman committed
1211
1212
        if inner_dim is None:
            inner_dim = int(dim * mult)
1213
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
1214

1215
        if activation_fn == "gelu":
1216
            act_fn = GELU(dim, inner_dim, bias=bias)
Kashif Rasul's avatar
Kashif Rasul committed
1217
        if activation_fn == "gelu-approximate":
1218
            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
1219
        elif activation_fn == "geglu":
1220
            act_fn = GEGLU(dim, inner_dim, bias=bias)
Will Berman's avatar
Will Berman committed
1221
        elif activation_fn == "geglu-approximate":
1222
            act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
1223
1224
        elif activation_fn == "swiglu":
            act_fn = SwiGLU(dim, inner_dim, bias=bias)
Aryan's avatar
Aryan committed
1225
1226
        elif activation_fn == "linear-silu":
            act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu")
Will Berman's avatar
Will Berman committed
1227
1228

        self.net = nn.ModuleList([])
1229
        # project in
1230
        self.net.append(act_fn)
1231
1232
1233
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
1234
        self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
Kashif Rasul's avatar
Kashif Rasul committed
1235
1236
1237
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
1238

1239
1240
1241
1242
    def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
1243
        for module in self.net:
1244
            hidden_states = module(hidden_states)
1245
        return hidden_states