attention.py 27.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional
15
16

import torch
Will Berman's avatar
Will Berman committed
17
import torch.nn.functional as F
18
19
from torch import nn

20
from ..utils import USE_PEFT_BACKEND
Dhruv Nair's avatar
Dhruv Nair committed
21
from ..utils.torch_utils import maybe_allow_in_graph
22
from .activations import GEGLU, GELU, ApproximateGELU
Patrick von Platen's avatar
Patrick von Platen committed
23
from .attention_processor import Attention
Dhruv Nair's avatar
Dhruv Nair committed
24
from .embeddings import SinusoidalPositionalEmbedding
25
from .lora import LoRACompatibleLinear
Will Berman's avatar
Will Berman committed
26
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
27
28


Suraj Patil's avatar
Suraj Patil committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _chunked_feed_forward(
    ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
):
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
    if lora_scale is None:
        ff_output = torch.cat(
            [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
            dim=chunk_dim,
        )
    else:
        # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
        ff_output = torch.cat(
            [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
            dim=chunk_dim,
        )

    return ff_output


54
55
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
56
57
58
59
60
61
62
63
64
65
66
    r"""
    A gated self-attention dense layer that combines visual features and object features.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        context_dim (`int`): The number of channels in the context.
        n_heads (`int`): The number of heads to use for attention.
        d_head (`int`): The number of channels in each head.
    """

    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

83
    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
84
85
86
87
88
89
90
91
92
93
94
95
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


96
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
97
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
98
99
100
101
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
102
103
104
105
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
106
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
107
108
109
110
111
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
Dhruv Nair's avatar
Dhruv Nair committed
126
127
128
129
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
Kashif Rasul's avatar
Kashif Rasul committed
130
131
132
133
134
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
135
136
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
137
        dropout=0.0,
Will Berman's avatar
Will Berman committed
138
139
140
141
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
142
        only_cross_attention: bool = False,
143
        double_self_attention: bool = False,
144
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
145
        norm_elementwise_affine: bool = True,
146
        norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'layer_norm_i2vgen'
Sayak Paul's avatar
Sayak Paul committed
147
        norm_eps: float = 1e-5,
Kashif Rasul's avatar
Kashif Rasul committed
148
        final_dropout: bool = False,
149
        attention_type: str = "default",
Dhruv Nair's avatar
Dhruv Nair committed
150
151
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
Will Berman's avatar
Will Berman committed
152
153
154
155
156
        ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
        ada_norm_bias: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
157
    ):
Patrick von Platen's avatar
Patrick von Platen committed
158
        super().__init__()
159
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
160
161
162
163
164
165

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
166

167
168
169
        self.norm_type = norm_type
        self.num_embeds_ada_norm = num_embeds_ada_norm

Dhruv Nair's avatar
Dhruv Nair committed
170
171
172
173
174
175
176
177
178
179
        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

180
        # Define 3 blocks. Each block has its own normalization layer.
181
        # 1. Self-Attn
182
        if norm_type == "ada_norm":
183
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
184
        elif norm_type == "ada_norm_zero":
185
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
186
        elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
187
188
189
190
191
192
193
194
            self.norm1 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "rms_norm",
            )
195
        else:
Sayak Paul's avatar
Sayak Paul committed
196
197
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

Patrick von Platen's avatar
Patrick von Platen committed
198
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
199
200
201
202
203
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
204
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
205
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
206
            out_bias=attention_out_bias,
207
208
        )

209
        # 2. Cross-Attn
210
        if cross_attention_dim is not None or double_self_attention:
211
212
213
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
214
            if norm_type == "ada_norm":
Will Berman's avatar
Will Berman committed
215
                self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
216
            elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
217
218
219
220
221
222
223
224
225
226
227
                self.norm2 = AdaLayerNormContinuous(
                    dim,
                    ada_norm_continous_conditioning_embedding_dim,
                    norm_elementwise_affine,
                    norm_eps,
                    ada_norm_bias,
                    "rms_norm",
                )
            else:
                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

Patrick von Platen's avatar
Patrick von Platen committed
228
            self.attn2 = Attention(
229
                query_dim=dim,
230
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
231
232
233
234
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
235
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
236
                out_bias=attention_out_bias,
Will Berman's avatar
Will Berman committed
237
            )  # is self-attn if encoder_hidden_states is none
238
239
        else:
            self.norm2 = None
240
            self.attn2 = None
241
242

        # 3. Feed-forward
243
        if norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
244
245
246
247
248
249
250
251
            self.norm3 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "layer_norm",
            )
252
253

        elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]:
Will Berman's avatar
Will Berman committed
254
            self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
255
256
        elif norm_type == "layer_norm_i2vgen":
            self.norm3 = None
Sayak Paul's avatar
Sayak Paul committed
257

Suraj Patil's avatar
Suraj Patil committed
258
259
260
261
262
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
Will Berman's avatar
Will Berman committed
263
264
            inner_dim=ff_inner_dim,
            bias=ff_bias,
Suraj Patil's avatar
Suraj Patil committed
265
        )
Patrick von Platen's avatar
Patrick von Platen committed
266

267
        # 4. Fuser
268
        if attention_type == "gated" or attention_type == "gated-text-image":
269
270
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

Sayak Paul's avatar
Sayak Paul committed
271
        # 5. Scale-shift for PixArt-Alpha.
272
        if norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
273
274
            self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

275
276
277
278
        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

Suraj Patil's avatar
Suraj Patil committed
279
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
280
281
282
283
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

284
285
    def forward(
        self,
286
287
288
289
290
291
292
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
Will Berman's avatar
Will Berman committed
293
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
294
    ) -> torch.FloatTensor:
295
        # Notice that normalization is always applied before the real computation in the following blocks.
296
        # 0. Self-Attention
Sayak Paul's avatar
Sayak Paul committed
297
298
        batch_size = hidden_states.shape[0]

299
        if self.norm_type == "ada_norm":
Kashif Rasul's avatar
Kashif Rasul committed
300
            norm_hidden_states = self.norm1(hidden_states, timestep)
301
        elif self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
302
303
304
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
305
        elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
Kashif Rasul's avatar
Kashif Rasul committed
306
            norm_hidden_states = self.norm1(hidden_states)
307
        elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
308
            norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
309
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
310
311
312
313
314
315
316
317
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
            norm_hidden_states = self.norm1(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
            norm_hidden_states = norm_hidden_states.squeeze(1)
        else:
            raise ValueError("Incorrect norm used")
Kashif Rasul's avatar
Kashif Rasul committed
318

Dhruv Nair's avatar
Dhruv Nair committed
319
320
321
        if self.pos_embed is not None:
            norm_hidden_states = self.pos_embed(norm_hidden_states)

322
323
324
325
        # 1. Retrieve lora scale.
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

        # 2. Prepare GLIGEN inputs
326
327
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
328

329
330
331
332
333
334
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
335
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
336
            attn_output = gate_msa.unsqueeze(1) * attn_output
337
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
338
339
            attn_output = gate_msa * attn_output

340
        hidden_states = attn_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
341
342
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
343

344
        # 2.5 GLIGEN Control
345
346
347
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

348
        # 3. Cross-Attention
349
        if self.attn2 is not None:
350
            if self.norm_type == "ada_norm":
Sayak Paul's avatar
Sayak Paul committed
351
                norm_hidden_states = self.norm2(hidden_states, timestep)
352
            elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
Sayak Paul's avatar
Sayak Paul committed
353
                norm_hidden_states = self.norm2(hidden_states)
354
            elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
355
356
357
                # For PixArt norm2 isn't applied here:
                # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                norm_hidden_states = hidden_states
358
            elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
359
                norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
Sayak Paul's avatar
Sayak Paul committed
360
361
362
            else:
                raise ValueError("Incorrect norm")

363
            if self.pos_embed is not None and self.norm_type != "ada_norm_single":
Dhruv Nair's avatar
Dhruv Nair committed
364
                norm_hidden_states = self.pos_embed(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
365

366
367
368
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
369
                attention_mask=encoder_attention_mask,
370
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
371
            )
372
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
373

374
        # 4. Feed-forward
375
376
        # i2vgen doesn't have this norm 🤷‍♂️
        if self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
377
            norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
378
        elif not self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
379
            norm_hidden_states = self.norm3(hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
380

381
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
382
383
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

384
        if self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
385
386
387
            norm_hidden_states = self.norm2(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

388
389
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
Suraj Patil's avatar
Suraj Patil committed
390
391
            ff_output = _chunked_feed_forward(
                self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
392
393
            )
        else:
394
            ff_output = self.ff(norm_hidden_states, scale=lora_scale)
Kashif Rasul's avatar
Kashif Rasul committed
395

396
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
397
            ff_output = gate_mlp.unsqueeze(1) * ff_output
398
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
399
            ff_output = gate_mlp * ff_output
Kashif Rasul's avatar
Kashif Rasul committed
400
401

        hidden_states = ff_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
402
403
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
404

405
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
406
407


Suraj Patil's avatar
Suraj Patil committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
@maybe_allow_in_graph
class TemporalBasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block for video like data.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        time_mix_inner_dim (`int`): The number of channels for temporal attention.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
    """

    def __init__(
        self,
        dim: int,
        time_mix_inner_dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        cross_attention_dim: Optional[int] = None,
    ):
        super().__init__()
        self.is_res = dim == time_mix_inner_dim

        self.norm_in = nn.LayerNorm(dim)

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.norm_in = nn.LayerNorm(dim)
        self.ff_in = FeedForward(
            dim,
            dim_out=time_mix_inner_dim,
            activation_fn="geglu",
        )

        self.norm1 = nn.LayerNorm(time_mix_inner_dim)
        self.attn1 = Attention(
            query_dim=time_mix_inner_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            cross_attention_dim=None,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None:
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = nn.LayerNorm(time_mix_inner_dim)
            self.attn2 = Attention(
                query_dim=time_mix_inner_dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(time_mix_inner_dim)
        self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = None

    def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
        self._chunk_dim = 1

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        num_frames: int,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        batch_frames, seq_length, channels = hidden_states.shape
        batch_size = batch_frames // num_frames

        hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)

        residual = hidden_states
        hidden_states = self.norm_in(hidden_states)

        if self._chunk_size is not None:
Dhruv Nair's avatar
Dhruv Nair committed
502
            hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
Suraj Patil's avatar
Suraj Patil committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
        else:
            hidden_states = self.ff_in(hidden_states)

        if self.is_res:
            hidden_states = hidden_states + residual

        norm_hidden_states = self.norm1(hidden_states)
        attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
        hidden_states = attn_output + hidden_states

        # 3. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = self.norm2(hidden_states)
            attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self._chunk_size is not None:
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        if self.is_res:
            hidden_states = ff_output + hidden_states
        else:
            hidden_states = ff_output

        hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)

        return hidden_states


Will Berman's avatar
Will Berman committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
class SkipFFTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        kv_input_dim: int,
        kv_input_dim_proj_use_bias: bool,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        attention_out_bias: bool = True,
    ):
        super().__init__()
        if kv_input_dim != dim:
            self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
        else:
            self.kv_mapper = None

        self.norm1 = RMSNorm(dim, 1e-06)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim,
            out_bias=attention_out_bias,
        )

        self.norm2 = RMSNorm(dim, 1e-06)

        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            out_bias=attention_out_bias,
        )

    def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}

        if self.kv_mapper is not None:
            encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))

        norm_hidden_states = self.norm1(hidden_states)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        norm_hidden_states = self.norm2(hidden_states)

        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
611
class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
612
613
614
615
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
616
617
618
619
620
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
621
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
622
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
Kashif Rasul's avatar
Kashif Rasul committed
623
624
625
    """

    def __init__(
Will Berman's avatar
Will Berman committed
626
627
628
629
630
631
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
632
        final_dropout: bool = False,
Will Berman's avatar
Will Berman committed
633
        inner_dim=None,
634
        bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
635
    ):
Patrick von Platen's avatar
Patrick von Platen committed
636
        super().__init__()
Will Berman's avatar
Will Berman committed
637
638
        if inner_dim is None:
            inner_dim = int(dim * mult)
639
        dim_out = dim_out if dim_out is not None else dim
640
        linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
Patrick von Platen's avatar
Patrick von Platen committed
641

642
        if activation_fn == "gelu":
643
            act_fn = GELU(dim, inner_dim, bias=bias)
Kashif Rasul's avatar
Kashif Rasul committed
644
        if activation_fn == "gelu-approximate":
645
            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
646
        elif activation_fn == "geglu":
647
            act_fn = GEGLU(dim, inner_dim, bias=bias)
Will Berman's avatar
Will Berman committed
648
        elif activation_fn == "geglu-approximate":
649
            act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
Will Berman's avatar
Will Berman committed
650
651

        self.net = nn.ModuleList([])
652
        # project in
653
        self.net.append(act_fn)
654
655
656
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
657
        self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
Kashif Rasul's avatar
Kashif Rasul committed
658
659
660
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
661

662
    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
663
        compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
664
        for module in self.net:
665
            if isinstance(module, compatible_cls):
666
667
668
                hidden_states = module(hidden_states, scale)
            else:
                hidden_states = module(hidden_states)
669
        return hidden_states