attention.py 19.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
from typing import Callable, Optional
16
17

import torch
Patrick von Platen's avatar
Patrick von Platen committed
18
import torch.nn.functional as F
19
20
from torch import nn

Will Berman's avatar
Will Berman committed
21
from ..utils.import_utils import is_xformers_available
Patrick von Platen's avatar
Patrick von Platen committed
22
from .attention_processor import Attention
Kashif Rasul's avatar
Kashif Rasul committed
23
from .embeddings import CombinedTimestepLabelEmbeddings
24
25
26
27
28
29
30
31


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

32

33
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
38
39
40
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
41
42
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
43
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
44
45
46
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
47
48
    """

Will Berman's avatar
Will Berman committed
49
50
    # IMPORTANT;TODO(Patrick, William) - this class will be deprecated soon. Do not use it anymore

Patrick von Platen's avatar
Patrick von Platen committed
51
52
    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
53
54
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
55
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
56
57
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
62
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
63
        self.num_head_size = num_head_channels
Will Berman's avatar
Will Berman committed
64
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
68
69
70
71

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Alexander Pivovarov's avatar
Alexander Pivovarov committed
72
        self.proj_attn = nn.Linear(channels, channels, bias=True)
Patrick von Platen's avatar
Patrick von Platen committed
73

74
        self._use_memory_efficient_attention_xformers = False
75
        self._attention_op = None
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

91
92
93
    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
    ):
94
95
96
        if use_memory_efficient_attention_xformers:
            if not is_xformers_available():
                raise ModuleNotFoundError(
Patrick von Platen's avatar
Patrick von Platen committed
97
98
99
100
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
101
102
103
104
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
105
106
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
107
                )
108
109
110
111
112
113
114
115
116
117
118
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e
        self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
119
        self._attention_op = attention_op
120

Patrick von Platen's avatar
Patrick von Platen committed
121
122
123
124
125
126
    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
127

Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
131
132
133
134
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

135
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
136

Suraj Patil's avatar
Suraj Patil committed
137
138
139
140
        query_proj = self.reshape_heads_to_batch_dim(query_proj)
        key_proj = self.reshape_heads_to_batch_dim(key_proj)
        value_proj = self.reshape_heads_to_batch_dim(value_proj)

141
142
        if self._use_memory_efficient_attention_xformers:
            # Memory efficient attention
143
144
145
            hidden_states = xformers.ops.memory_efficient_attention(
                query_proj, key_proj, value_proj, attn_bias=None, op=self._attention_op
            )
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            hidden_states = hidden_states.to(query_proj.dtype)
        else:
            attention_scores = torch.baddbmm(
                torch.empty(
                    query_proj.shape[0],
                    query_proj.shape[1],
                    key_proj.shape[1],
                    dtype=query_proj.dtype,
                    device=query_proj.device,
                ),
                query_proj,
                key_proj.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )
            attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
            hidden_states = torch.bmm(attention_probs, value_proj)
Patrick von Platen's avatar
Patrick von Platen committed
163

Suraj Patil's avatar
Suraj Patil committed
164
165
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
166
167

        # compute next hidden_states
168
        hidden_states = self.proj_attn(hidden_states)
Will Berman's avatar
Will Berman committed
169

Patrick von Platen's avatar
Patrick von Platen committed
170
171
172
173
174
175
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
176

Patrick von Platen's avatar
Patrick von Platen committed
177
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
178
179
180
181
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
182
183
184
185
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
186
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
187
188
189
190
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
Will Berman's avatar
Will Berman committed
191
192
193
194
195
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
196
197
198
199
200
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
201
202
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
203
        dropout=0.0,
Will Berman's avatar
Will Berman committed
204
205
206
207
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
208
        only_cross_attention: bool = False,
209
        double_self_attention: bool = False,
210
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
211
212
213
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
214
    ):
Patrick von Platen's avatar
Patrick von Platen committed
215
        super().__init__()
216
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
217
218
219
220
221
222
223
224
225

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
226
227

        # 1. Self-Attn
Patrick von Platen's avatar
Patrick von Platen committed
228
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
229
230
231
232
233
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
234
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
235
            upcast_attention=upcast_attention,
236
237
        )

Kashif Rasul's avatar
Kashif Rasul committed
238
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
Will Berman's avatar
Will Berman committed
239

240
        # 2. Cross-Attn
241
        if cross_attention_dim is not None or double_self_attention:
Patrick von Platen's avatar
Patrick von Platen committed
242
            self.attn2 = Attention(
243
                query_dim=dim,
244
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
245
246
247
248
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
249
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
250
            )  # is self-attn if encoder_hidden_states is none
Will Berman's avatar
Will Berman committed
251
        else:
252
253
            self.attn2 = None

Kashif Rasul's avatar
Kashif Rasul committed
254
255
256
257
258
259
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
260

261
        if cross_attention_dim is not None or double_self_attention:
Kashif Rasul's avatar
Kashif Rasul committed
262
263
264
265
266
267
268
269
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
270
271
272
273
        else:
            self.norm2 = None

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
274
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
Patrick von Platen's avatar
Patrick von Platen committed
275

276
277
278
    def forward(
        self,
        hidden_states,
279
        attention_mask=None,
280
        encoder_hidden_states=None,
281
        encoder_attention_mask=None,
282
283
        timestep=None,
        cross_attention_kwargs=None,
Kashif Rasul's avatar
Kashif Rasul committed
284
        class_labels=None,
285
    ):
Kashif Rasul's avatar
Kashif Rasul committed
286
287
288
289
290
291
292
293
294
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

Will Berman's avatar
Will Berman committed
295
        # 1. Self-Attention
296
297
298
299
300
301
302
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
Kashif Rasul's avatar
Kashif Rasul committed
303
304
        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
305
        hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
306

307
308
309
310
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
311
312
            # TODO (Birch-San): Here we should prepare the encoder_attention mask correctly
            # prepare attention mask here
Kashif Rasul's avatar
Kashif Rasul committed
313
314

            # 2. Cross-Attention
315
316
317
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
318
                attention_mask=encoder_attention_mask,
319
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
320
            )
321
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
322
323

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
324
325
326
327
328
329
330
331
332
333
334
        norm_hidden_states = self.norm3(hidden_states)

        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        ff_output = self.ff(norm_hidden_states)

        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states
Will Berman's avatar
Will Berman committed
335

336
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
337
338
339


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
340
341
342
343
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
344
345
346
347
348
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
349
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
Kashif Rasul's avatar
Kashif Rasul committed
350
351
352
    """

    def __init__(
Will Berman's avatar
Will Berman committed
353
354
355
356
357
358
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
359
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
360
    ):
Patrick von Platen's avatar
Patrick von Platen committed
361
362
        super().__init__()
        inner_dim = int(dim * mult)
363
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
364

365
366
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
Kashif Rasul's avatar
Kashif Rasul committed
367
368
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
369
370
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
371
        elif activation_fn == "geglu-approximate":
372
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
373
374

        self.net = nn.ModuleList([])
375
        # project in
376
        self.net.append(act_fn)
377
378
379
380
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Kashif Rasul's avatar
Kashif Rasul committed
381
382
383
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
384

385
    def forward(self, hidden_states):
386
387
388
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
389

Patrick von Platen's avatar
Patrick von Platen committed
390

391
392
class GELU(nn.Module):
    r"""
Kashif Rasul's avatar
Kashif Rasul committed
393
    GELU activation function with tanh approximation support with `approximate="tanh"`.
394
395
    """

Kashif Rasul's avatar
Kashif Rasul committed
396
    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
397
398
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)
Kashif Rasul's avatar
Kashif Rasul committed
399
        self.approximate = approximate
400
401
402

    def gelu(self, gate):
        if gate.device.type != "mps":
Kashif Rasul's avatar
Kashif Rasul committed
403
            return F.gelu(gate, approximate=self.approximate)
404
        # mps: gelu is not implemented for float16
Kashif Rasul's avatar
Kashif Rasul committed
405
        return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
406
407
408
409
410
411
412

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
413
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
414
415
416
417
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
418
419
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
420
421
422
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
423
424
425
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

426
427
428
429
430
431
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

432
433
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
434
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
Kashif Rasul's avatar
Kashif Rasul committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490


class AdaLayerNormZero(nn.Module):
    """
    Norm layer adaptive layer norm zero (adaLN-Zero).
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()

        self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, timestep, class_labels, hidden_dtype=None):
        emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525


class AdaGroupNorm(nn.Module):
    """
    GroupNorm layer modified to incorporate timestep embeddings.
    """

    def __init__(
        self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
    ):
        super().__init__()
        self.num_groups = num_groups
        self.eps = eps
        self.act = None
        if act_fn == "swish":
            self.act = lambda x: F.silu(x)
        elif act_fn == "mish":
            self.act = nn.Mish()
        elif act_fn == "silu":
            self.act = nn.SiLU()
        elif act_fn == "gelu":
            self.act = nn.GELU()

        self.linear = nn.Linear(embedding_dim, out_dim * 2)

    def forward(self, x, emb):
        if self.act:
            emb = self.act(emb)
        emb = self.linear(emb)
        emb = emb[:, :, None, None]
        scale, shift = emb.chunk(2, dim=1)

        x = F.group_norm(x, self.num_groups, eps=self.eps)
        x = x * (1 + scale) + shift
        return x