"vscode:/vscode.git/clone" did not exist on "11d10930bd0aa808332d1019354968baf871dae6"
attention.py 18.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
Kashif Rasul's avatar
Kashif Rasul committed
15
from typing import Optional
16
17

import torch
Patrick von Platen's avatar
Patrick von Platen committed
18
import torch.nn.functional as F
19
20
from torch import nn

21
22
23
24
25
26
27
28
29
from diffusers.utils.import_utils import is_xformers_available


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

30

31
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
35
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
36
37
38
39
40
41
42
43
44
    Uses three q, k, v linear layers to compute attention.

    Parameters:
        channels (:obj:`int`): The number of channels in the input and output.
        num_head_channels (:obj:`int`, *optional*):
            The number of channels in each head. If None, then `num_heads` = 1.
        num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
    """

    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
49
50
51
52
53
        channels: int,
        num_head_channels: Optional[int] = None,
        num_groups: int = 32,
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56
57
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
58
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
62
63
64
65
66
67
        self.num_head_size = num_head_channels
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
68
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
69
70

    def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
71
        new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
Patrick von Platen's avatar
Patrick von Platen committed
72
73
74
75
76
77
78
79
80
81
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
82

Patrick von Platen's avatar
Patrick von Platen committed
83
84
85
86
87
88
89
90
91
92
93
94
95
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

        # transpose
        query_states = self.transpose_for_scores(query_proj)
        key_states = self.transpose_for_scores(key_proj)
        value_states = self.transpose_for_scores(value_proj)

        # get scores
96
        scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
97
        attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale)  # TODO: use baddmm
98
        attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
99
100

        # compute attention output
101
        hidden_states = torch.matmul(attention_probs, value_states)
Patrick von Platen's avatar
Patrick von Platen committed
102

103
104
105
        hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
        new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
        hidden_states = hidden_states.view(new_hidden_states_shape)
Patrick von Platen's avatar
Patrick von Platen committed
106
107

        # compute next hidden_states
108
        hidden_states = self.proj_attn(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
109
110
111
112
113
114
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
115

Patrick von Platen's avatar
Patrick von Platen committed
116
117
118
class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
Kashif Rasul's avatar
Kashif Rasul committed
119
120
121
122
123
124
125
126
127
    standard transformer action. Finally, reshape to image.

    Parameters:
        in_channels (:obj:`int`): The number of channels in the input and output.
        n_heads (:obj:`int`): The number of heads to use for multi-head attention.
        d_head (:obj:`int`): The number of channels in each head.
        depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
        context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
Patrick von Platen's avatar
Patrick von Platen committed
128
129
    """

Kashif Rasul's avatar
Kashif Rasul committed
130
131
132
133
134
135
136
    def __init__(
        self,
        in_channels: int,
        n_heads: int,
        d_head: int,
        depth: int = 1,
        dropout: float = 0.0,
137
        num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
138
139
        context_dim: Optional[int] = None,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
140
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
141
142
        self.n_heads = n_heads
        self.d_head = d_head
Patrick von Platen's avatar
Patrick von Platen committed
143
144
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
145
        self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
146
147
148
149
150
151
152
153
154
155

        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
        )

Patrick von Platen's avatar
Patrick von Platen committed
156
        self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
Patrick von Platen's avatar
Patrick von Platen committed
157

158
159
160
161
    def _set_attention_slice(self, slice_size):
        for block in self.transformer_blocks:
            block._set_attention_slice(slice_size)

162
163
164
165
    def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for block in self.transformer_blocks:
            block._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

166
    def forward(self, hidden_states, context=None):
Patrick von Platen's avatar
Patrick von Platen committed
167
        # note: if no context is given, cross-attention defaults to self-attention
168
        batch, channel, height, width = hidden_states.shape
169
170
171
        residual = hidden_states
        hidden_states = self.norm(hidden_states)
        hidden_states = self.proj_in(hidden_states)
Yih-Dar's avatar
Yih-Dar committed
172
        inner_dim = hidden_states.shape[1]
173
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
Patrick von Platen's avatar
Patrick von Platen committed
174
        for block in self.transformer_blocks:
175
            hidden_states = block(hidden_states, context=context)
176
        hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2)
177
178
        hidden_states = self.proj_out(hidden_states)
        return hidden_states + residual
Patrick von Platen's avatar
Patrick von Platen committed
179
180
181


class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    r"""
    A basic Transformer block.

    Parameters:
        dim (:obj:`int`): The number of channels in the input and output.
        n_heads (:obj:`int`): The number of heads to use for multi-head attention.
        d_head (:obj:`int`): The number of channels in each head.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
        context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
        gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
        checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
    """

    def __init__(
        self,
        dim: int,
        n_heads: int,
        d_head: int,
        dropout=0.0,
        context_dim: Optional[int] = None,
        gated_ff: bool = True,
        checkpoint: bool = True,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
205
206
207
208
209
210
211
212
213
214
215
216
217
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

218
219
220
221
    def _set_attention_slice(self, slice_size):
        self.attn1._slice_size = slice_size
        self.attn2._slice_size = slice_size

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        if not is_xformers_available():
            print("Here is how to install it")
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
            self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

248
249
250
251
252
    def forward(self, hidden_states, context=None):
        hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states
        hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
253
254
255


class CrossAttention(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    r"""
    A cross attention layer.

    Parameters:
        query_dim (:obj:`int`): The number of channels in the query.
        context_dim (:obj:`int`, *optional*):
            The number of channels in the context. If not given, defaults to `query_dim`.
        heads (:obj:`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (:obj:`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(
        self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
    ):
Patrick von Platen's avatar
Patrick von Platen committed
271
272
        super().__init__()
        inner_dim = dim_head * heads
273
        context_dim = context_dim if context_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
274
275
276

        self.scale = dim_head**-0.5
        self.heads = heads
277
278
279
280
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self._slice_size = None
281
        self._use_memory_efficient_attention_xformers = False
Patrick von Platen's avatar
Patrick von Platen committed
282
283
284
285
286

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

287
288
289
        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        self.to_out.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

305
    def forward(self, hidden_states, context=None, mask=None):
306
        batch_size, sequence_length, _ = hidden_states.shape
Patrick von Platen's avatar
Patrick von Platen committed
307

308
309
310
311
        query = self.to_q(hidden_states)
        context = context if context is not None else hidden_states
        key = self.to_k(context)
        value = self.to_v(context)
Patrick von Platen's avatar
Patrick von Platen committed
312

313
314
        dim = query.shape[-1]

315
316
317
        query = self.reshape_heads_to_batch_dim(query)
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)
Patrick von Platen's avatar
Patrick von Platen committed
318

319
        # TODO(PVP) - mask is currently never used. Remember to re-implement when used
Patrick von Platen's avatar
Patrick von Platen committed
320
321

        # attention, what we cannot get enough of
322
323
        if self._use_memory_efficient_attention_xformers:
            hidden_states = self._memory_efficient_attention_xformers(query, key, value)
324
        else:
325
326
327
328
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value)
            else:
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
329

330
331
332
333
334
        # linear proj
        hidden_states = self.to_out[0](hidden_states)
        # dropout
        hidden_states = self.to_out[1](hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
335

336
    def _attention(self, query, key, value):
Nouamane Tazi's avatar
Nouamane Tazi committed
337
        # TODO: use baddbmm for better performance
338
339
340
341
342
        if query.device.type == "mps":
            # Better performance on mps (~20-25%)
            attention_scores = torch.einsum("b i d, b j d -> b i j", query, key) * self.scale
        else:
            attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
343
344
        attention_probs = attention_scores.softmax(dim=-1)
        # compute attention output
345
346
347
348
349
350

        if query.device.type == "mps":
            hidden_states = torch.einsum("b i j, b j d -> b i d", attention_probs, value)
        else:
            hidden_states = torch.matmul(attention_probs, value)

351
352
353
354
355
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _sliced_attention(self, query, key, value, sequence_length, dim):
356
357
358
359
360
361
362
363
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size
364
365
366
367
368
369
370
371
372
373
            if query.device.type == "mps":
                # Better performance on mps (~20-25%)
                attn_slice = (
                    torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx])
                    * self.scale
                )
            else:
                attn_slice = (
                    torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
                )  # TODO: use baddbmm for better performance
374
            attn_slice = attn_slice.softmax(dim=-1)
375
376
377
378
            if query.device.type == "mps":
                attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx])
            else:
                attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])
379
380
381
382
383
384

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
385
386
387
388
389

    def _memory_efficient_attention_xformers(self, query, key, value):
        hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=None)
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
390
391
392


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    r"""
    A feed-forward layer.

    Parameters:
        dim (:obj:`int`): The number of channels in the input.
        dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(
        self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0
    ):
Patrick von Platen's avatar
Patrick von Platen committed
407
408
        super().__init__()
        inner_dim = int(dim * mult)
409
        dim_out = dim_out if dim_out is not None else dim
410
        self.net = nn.ModuleList([])
Patrick von Platen's avatar
Patrick von Platen committed
411

412
413
414
415
416
417
        # project in
        self.net.append(GEGLU(dim, inner_dim))
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Patrick von Platen's avatar
Patrick von Platen committed
418

419
    def forward(self, hidden_states):
420
421
422
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
423

Patrick von Platen's avatar
Patrick von Platen committed
424

Patrick von Platen's avatar
Patrick von Platen committed
425
426
# feedforward
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
427
428
429
430
431
432
433
434
435
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
        dim_in (:obj:`int`): The number of channels in the input.
        dim_out (:obj:`int`): The number of channels in the output.
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
436
437
438
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

439
440
441
442
443
444
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

445
446
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
447
        return hidden_states * self.gelu(gate)