attention.py 27.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional
15
16

import torch
Will Berman's avatar
Will Berman committed
17
import torch.nn.functional as F
18
19
from torch import nn

20
from ..utils import USE_PEFT_BACKEND
Dhruv Nair's avatar
Dhruv Nair committed
21
from ..utils.torch_utils import maybe_allow_in_graph
22
from .activations import GEGLU, GELU, ApproximateGELU
Patrick von Platen's avatar
Patrick von Platen committed
23
from .attention_processor import Attention
Dhruv Nair's avatar
Dhruv Nair committed
24
from .embeddings import SinusoidalPositionalEmbedding
25
from .lora import LoRACompatibleLinear
Will Berman's avatar
Will Berman committed
26
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
27
28


Suraj Patil's avatar
Suraj Patil committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _chunked_feed_forward(
    ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
):
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
    if lora_scale is None:
        ff_output = torch.cat(
            [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
            dim=chunk_dim,
        )
    else:
        # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
        ff_output = torch.cat(
            [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
            dim=chunk_dim,
        )

    return ff_output


54
55
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
56
57
58
59
60
61
62
63
64
65
66
    r"""
    A gated self-attention dense layer that combines visual features and object features.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        context_dim (`int`): The number of channels in the context.
        n_heads (`int`): The number of heads to use for attention.
        d_head (`int`): The number of channels in each head.
    """

    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

83
    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
84
85
86
87
88
89
90
91
92
93
94
95
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


96
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
97
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
98
99
100
101
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
102
103
104
105
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
106
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
107
108
109
110
111
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
Dhruv Nair's avatar
Dhruv Nair committed
126
127
128
129
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
Kashif Rasul's avatar
Kashif Rasul committed
130
131
132
133
134
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
135
136
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
137
        dropout=0.0,
Will Berman's avatar
Will Berman committed
138
139
140
141
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
142
        only_cross_attention: bool = False,
143
        double_self_attention: bool = False,
144
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
145
        norm_elementwise_affine: bool = True,
146
        norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'layer_norm_i2vgen'
Sayak Paul's avatar
Sayak Paul committed
147
        norm_eps: float = 1e-5,
Kashif Rasul's avatar
Kashif Rasul committed
148
        final_dropout: bool = False,
149
        attention_type: str = "default",
Dhruv Nair's avatar
Dhruv Nair committed
150
151
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
Will Berman's avatar
Will Berman committed
152
153
154
155
156
        ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
        ada_norm_bias: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
157
    ):
Patrick von Platen's avatar
Patrick von Platen committed
158
        super().__init__()
159
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
160

161
        # We keep these boolean flags for backward-compatibility.
162
163
164
165
166
167
        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
        self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
        self.use_layer_norm = norm_type == "layer_norm"
        self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"

Kashif Rasul's avatar
Kashif Rasul committed
168
169
170
171
172
        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
173

174
175
176
        self.norm_type = norm_type
        self.num_embeds_ada_norm = num_embeds_ada_norm

Dhruv Nair's avatar
Dhruv Nair committed
177
178
179
180
181
182
183
184
185
186
        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

187
        # Define 3 blocks. Each block has its own normalization layer.
188
        # 1. Self-Attn
189
        if norm_type == "ada_norm":
190
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
191
        elif norm_type == "ada_norm_zero":
192
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
193
        elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
194
195
196
197
198
199
200
201
            self.norm1 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "rms_norm",
            )
202
        else:
Sayak Paul's avatar
Sayak Paul committed
203
204
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

Patrick von Platen's avatar
Patrick von Platen committed
205
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
206
207
208
209
210
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
211
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
212
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
213
            out_bias=attention_out_bias,
214
215
        )

216
        # 2. Cross-Attn
217
        if cross_attention_dim is not None or double_self_attention:
218
219
220
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
221
            if norm_type == "ada_norm":
Will Berman's avatar
Will Berman committed
222
                self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
223
            elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
224
225
226
227
228
229
230
231
232
233
234
                self.norm2 = AdaLayerNormContinuous(
                    dim,
                    ada_norm_continous_conditioning_embedding_dim,
                    norm_elementwise_affine,
                    norm_eps,
                    ada_norm_bias,
                    "rms_norm",
                )
            else:
                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

Patrick von Platen's avatar
Patrick von Platen committed
235
            self.attn2 = Attention(
236
                query_dim=dim,
237
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
238
239
240
241
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
242
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
243
                out_bias=attention_out_bias,
Will Berman's avatar
Will Berman committed
244
            )  # is self-attn if encoder_hidden_states is none
245
246
        else:
            self.norm2 = None
247
            self.attn2 = None
248
249

        # 3. Feed-forward
250
        if norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
251
252
253
254
255
256
257
258
            self.norm3 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "layer_norm",
            )
259
260

        elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]:
Will Berman's avatar
Will Berman committed
261
            self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
262
263
        elif norm_type == "layer_norm_i2vgen":
            self.norm3 = None
Sayak Paul's avatar
Sayak Paul committed
264

Suraj Patil's avatar
Suraj Patil committed
265
266
267
268
269
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
Will Berman's avatar
Will Berman committed
270
271
            inner_dim=ff_inner_dim,
            bias=ff_bias,
Suraj Patil's avatar
Suraj Patil committed
272
        )
Patrick von Platen's avatar
Patrick von Platen committed
273

274
        # 4. Fuser
275
        if attention_type == "gated" or attention_type == "gated-text-image":
276
277
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

Sayak Paul's avatar
Sayak Paul committed
278
        # 5. Scale-shift for PixArt-Alpha.
279
        if norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
280
281
            self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

282
283
284
285
        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

Suraj Patil's avatar
Suraj Patil committed
286
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
287
288
289
290
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

291
292
    def forward(
        self,
293
294
295
296
297
298
299
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
Will Berman's avatar
Will Berman committed
300
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
301
    ) -> torch.FloatTensor:
302
        # Notice that normalization is always applied before the real computation in the following blocks.
303
        # 0. Self-Attention
Sayak Paul's avatar
Sayak Paul committed
304
305
        batch_size = hidden_states.shape[0]

306
        if self.norm_type == "ada_norm":
Kashif Rasul's avatar
Kashif Rasul committed
307
            norm_hidden_states = self.norm1(hidden_states, timestep)
308
        elif self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
309
310
311
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
312
        elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
Kashif Rasul's avatar
Kashif Rasul committed
313
            norm_hidden_states = self.norm1(hidden_states)
314
        elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
315
            norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
316
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
317
318
319
320
321
322
323
324
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
            norm_hidden_states = self.norm1(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
            norm_hidden_states = norm_hidden_states.squeeze(1)
        else:
            raise ValueError("Incorrect norm used")
Kashif Rasul's avatar
Kashif Rasul committed
325

Dhruv Nair's avatar
Dhruv Nair committed
326
327
328
        if self.pos_embed is not None:
            norm_hidden_states = self.pos_embed(norm_hidden_states)

329
330
331
332
        # 1. Retrieve lora scale.
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

        # 2. Prepare GLIGEN inputs
333
334
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
335

336
337
338
339
340
341
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
342
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
343
            attn_output = gate_msa.unsqueeze(1) * attn_output
344
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
345
346
            attn_output = gate_msa * attn_output

347
        hidden_states = attn_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
348
349
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
350

351
        # 2.5 GLIGEN Control
352
353
354
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

355
        # 3. Cross-Attention
356
        if self.attn2 is not None:
357
            if self.norm_type == "ada_norm":
Sayak Paul's avatar
Sayak Paul committed
358
                norm_hidden_states = self.norm2(hidden_states, timestep)
359
            elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
Sayak Paul's avatar
Sayak Paul committed
360
                norm_hidden_states = self.norm2(hidden_states)
361
            elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
362
363
364
                # For PixArt norm2 isn't applied here:
                # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                norm_hidden_states = hidden_states
365
            elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
366
                norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
Sayak Paul's avatar
Sayak Paul committed
367
368
369
            else:
                raise ValueError("Incorrect norm")

370
            if self.pos_embed is not None and self.norm_type != "ada_norm_single":
Dhruv Nair's avatar
Dhruv Nair committed
371
                norm_hidden_states = self.pos_embed(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
372

373
374
375
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
376
                attention_mask=encoder_attention_mask,
377
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
378
            )
379
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
380

381
        # 4. Feed-forward
382
383
        # i2vgen doesn't have this norm 🤷‍♂️
        if self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
384
            norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
385
        elif not self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
386
            norm_hidden_states = self.norm3(hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
387

388
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
389
390
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

391
        if self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
392
393
394
            norm_hidden_states = self.norm2(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

395
396
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
Suraj Patil's avatar
Suraj Patil committed
397
398
            ff_output = _chunked_feed_forward(
                self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
399
400
            )
        else:
401
            ff_output = self.ff(norm_hidden_states, scale=lora_scale)
Kashif Rasul's avatar
Kashif Rasul committed
402

403
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
404
            ff_output = gate_mlp.unsqueeze(1) * ff_output
405
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
406
            ff_output = gate_mlp * ff_output
Kashif Rasul's avatar
Kashif Rasul committed
407
408

        hidden_states = ff_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
409
410
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
411

412
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
413
414


Suraj Patil's avatar
Suraj Patil committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
@maybe_allow_in_graph
class TemporalBasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block for video like data.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        time_mix_inner_dim (`int`): The number of channels for temporal attention.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
    """

    def __init__(
        self,
        dim: int,
        time_mix_inner_dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        cross_attention_dim: Optional[int] = None,
    ):
        super().__init__()
        self.is_res = dim == time_mix_inner_dim

        self.norm_in = nn.LayerNorm(dim)

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.norm_in = nn.LayerNorm(dim)
        self.ff_in = FeedForward(
            dim,
            dim_out=time_mix_inner_dim,
            activation_fn="geglu",
        )

        self.norm1 = nn.LayerNorm(time_mix_inner_dim)
        self.attn1 = Attention(
            query_dim=time_mix_inner_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            cross_attention_dim=None,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None:
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = nn.LayerNorm(time_mix_inner_dim)
            self.attn2 = Attention(
                query_dim=time_mix_inner_dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(time_mix_inner_dim)
        self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = None

    def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
        self._chunk_dim = 1

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        num_frames: int,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        batch_frames, seq_length, channels = hidden_states.shape
        batch_size = batch_frames // num_frames

        hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)

        residual = hidden_states
        hidden_states = self.norm_in(hidden_states)

        if self._chunk_size is not None:
Dhruv Nair's avatar
Dhruv Nair committed
509
            hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
Suraj Patil's avatar
Suraj Patil committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        else:
            hidden_states = self.ff_in(hidden_states)

        if self.is_res:
            hidden_states = hidden_states + residual

        norm_hidden_states = self.norm1(hidden_states)
        attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
        hidden_states = attn_output + hidden_states

        # 3. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = self.norm2(hidden_states)
            attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self._chunk_size is not None:
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        if self.is_res:
            hidden_states = ff_output + hidden_states
        else:
            hidden_states = ff_output

        hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)

        return hidden_states


Will Berman's avatar
Will Berman committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
class SkipFFTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        kv_input_dim: int,
        kv_input_dim_proj_use_bias: bool,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        attention_out_bias: bool = True,
    ):
        super().__init__()
        if kv_input_dim != dim:
            self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
        else:
            self.kv_mapper = None

        self.norm1 = RMSNorm(dim, 1e-06)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim,
            out_bias=attention_out_bias,
        )

        self.norm2 = RMSNorm(dim, 1e-06)

        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            out_bias=attention_out_bias,
        )

    def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}

        if self.kv_mapper is not None:
            encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))

        norm_hidden_states = self.norm1(hidden_states)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        norm_hidden_states = self.norm2(hidden_states)

        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
618
class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
619
620
621
622
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
623
624
625
626
627
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
628
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
629
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
Kashif Rasul's avatar
Kashif Rasul committed
630
631
632
    """

    def __init__(
Will Berman's avatar
Will Berman committed
633
634
635
636
637
638
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
639
        final_dropout: bool = False,
Will Berman's avatar
Will Berman committed
640
        inner_dim=None,
641
        bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
642
    ):
Patrick von Platen's avatar
Patrick von Platen committed
643
        super().__init__()
Will Berman's avatar
Will Berman committed
644
645
        if inner_dim is None:
            inner_dim = int(dim * mult)
646
        dim_out = dim_out if dim_out is not None else dim
647
        linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
Patrick von Platen's avatar
Patrick von Platen committed
648

649
        if activation_fn == "gelu":
650
            act_fn = GELU(dim, inner_dim, bias=bias)
Kashif Rasul's avatar
Kashif Rasul committed
651
        if activation_fn == "gelu-approximate":
652
            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
653
        elif activation_fn == "geglu":
654
            act_fn = GEGLU(dim, inner_dim, bias=bias)
Will Berman's avatar
Will Berman committed
655
        elif activation_fn == "geglu-approximate":
656
            act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
Will Berman's avatar
Will Berman committed
657
658

        self.net = nn.ModuleList([])
659
        # project in
660
        self.net.append(act_fn)
661
662
663
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
664
        self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
Kashif Rasul's avatar
Kashif Rasul committed
665
666
667
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
668

669
    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
670
        compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
671
        for module in self.net:
672
            if isinstance(module, compatible_cls):
673
674
675
                hidden_states = module(hidden_states, scale)
            else:
                hidden_states = module(hidden_states)
676
        return hidden_states