attention.py 15.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional
15
16
17
18

import torch
from torch import nn

19
from ..utils import USE_PEFT_BACKEND
Dhruv Nair's avatar
Dhruv Nair committed
20
from ..utils.torch_utils import maybe_allow_in_graph
21
from .activations import GEGLU, GELU, ApproximateGELU
Patrick von Platen's avatar
Patrick von Platen committed
22
from .attention_processor import Attention
Dhruv Nair's avatar
Dhruv Nair committed
23
from .embeddings import SinusoidalPositionalEmbedding
24
from .lora import LoRACompatibleLinear
25
from .normalization import AdaLayerNorm, AdaLayerNormZero
26
27


28
29
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
30
31
32
33
34
35
36
37
38
39
40
    r"""
    A gated self-attention dense layer that combines visual features and object features.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        context_dim (`int`): The number of channels in the context.
        n_heads (`int`): The number of heads to use for attention.
        d_head (`int`): The number of channels in each head.
    """

    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

57
    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
58
59
60
61
62
63
64
65
66
67
68
69
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


70
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
71
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
72
73
74
75
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
76
77
78
79
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
80
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
81
82
83
84
85
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
Dhruv Nair's avatar
Dhruv Nair committed
100
101
102
103
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
Kashif Rasul's avatar
Kashif Rasul committed
104
105
106
107
108
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
109
110
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
111
        dropout=0.0,
Will Berman's avatar
Will Berman committed
112
113
114
115
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
116
        only_cross_attention: bool = False,
117
        double_self_attention: bool = False,
118
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
119
120
121
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
122
        attention_type: str = "default",
Dhruv Nair's avatar
Dhruv Nair committed
123
124
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
Kashif Rasul's avatar
Kashif Rasul committed
125
    ):
Patrick von Platen's avatar
Patrick von Platen committed
126
        super().__init__()
127
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
128
129
130
131
132
133
134
135
136

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
137

Dhruv Nair's avatar
Dhruv Nair committed
138
139
140
141
142
143
144
145
146
147
        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

148
        # Define 3 blocks. Each block has its own normalization layer.
149
        # 1. Self-Attn
150
151
152
153
154
155
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
Patrick von Platen's avatar
Patrick von Platen committed
156
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
157
158
159
160
161
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
162
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
163
            upcast_attention=upcast_attention,
164
165
        )

166
        # 2. Cross-Attn
167
        if cross_attention_dim is not None or double_self_attention:
168
169
170
171
172
173
174
175
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
Patrick von Platen's avatar
Patrick von Platen committed
176
            self.attn2 = Attention(
177
                query_dim=dim,
178
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
179
180
181
182
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
183
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
184
            )  # is self-attn if encoder_hidden_states is none
185
186
        else:
            self.norm2 = None
187
            self.attn2 = None
188
189

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
190
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
191
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
Patrick von Platen's avatar
Patrick von Platen committed
192

193
        # 4. Fuser
194
        if attention_type == "gated" or attention_type == "gated-text-image":
195
196
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

197
198
199
200
201
202
203
204
205
        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

206
207
    def forward(
        self,
208
209
210
211
212
213
214
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
215
    ) -> torch.FloatTensor:
216
        # Notice that normalization is always applied before the real computation in the following blocks.
217
        # 0. Self-Attention
Kashif Rasul's avatar
Kashif Rasul committed
218
219
220
221
222
223
224
225
226
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

Dhruv Nair's avatar
Dhruv Nair committed
227
228
229
        if self.pos_embed is not None:
            norm_hidden_states = self.pos_embed(norm_hidden_states)

230
231
232
233
        # 1. Retrieve lora scale.
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

        # 2. Prepare GLIGEN inputs
234
235
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
236

237
238
239
240
241
242
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
Kashif Rasul's avatar
Kashif Rasul committed
243
244
        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
245
        hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
246

247
        # 2.5 GLIGEN Control
248
249
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
250
        # 2.5 ends
251

252
        # 3. Cross-Attention
253
254
255
256
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
Dhruv Nair's avatar
Dhruv Nair committed
257
258
            if self.pos_embed is not None:
                norm_hidden_states = self.pos_embed(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
259

260
261
262
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
263
                attention_mask=encoder_attention_mask,
264
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
265
            )
266
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
267

268
        # 4. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
269
270
271
272
273
        norm_hidden_states = self.norm3(hidden_states)

        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

274
275
276
277
278
279
280
281
282
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
                raise ValueError(
                    f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
                )

            num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
            ff_output = torch.cat(
283
284
285
286
                [
                    self.ff(hid_slice, scale=lora_scale)
                    for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
                ],
287
288
289
                dim=self._chunk_dim,
            )
        else:
290
            ff_output = self.ff(norm_hidden_states, scale=lora_scale)
Kashif Rasul's avatar
Kashif Rasul committed
291
292
293
294
295

        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states
Will Berman's avatar
Will Berman committed
296

297
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
298
299
300


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
301
302
303
304
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
305
306
307
308
309
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
310
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
Kashif Rasul's avatar
Kashif Rasul committed
311
312
313
    """

    def __init__(
Will Berman's avatar
Will Berman committed
314
315
316
317
318
319
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
320
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
321
    ):
Patrick von Platen's avatar
Patrick von Platen committed
322
323
        super().__init__()
        inner_dim = int(dim * mult)
324
        dim_out = dim_out if dim_out is not None else dim
325
        linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
Patrick von Platen's avatar
Patrick von Platen committed
326

327
328
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
Kashif Rasul's avatar
Kashif Rasul committed
329
330
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
331
332
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
333
        elif activation_fn == "geglu-approximate":
334
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
335
336

        self.net = nn.ModuleList([])
337
        # project in
338
        self.net.append(act_fn)
339
340
341
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
342
        self.net.append(linear_cls(inner_dim, dim_out))
Kashif Rasul's avatar
Kashif Rasul committed
343
344
345
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
346

347
    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
348
        compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
349
        for module in self.net:
350
            if isinstance(module, compatible_cls):
351
352
353
                hidden_states = module(hidden_states, scale)
            else:
                hidden_states = module(hidden_states)
354
        return hidden_states