attention.py 19.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
from typing import Callable, Optional
16
17

import torch
Patrick von Platen's avatar
Patrick von Platen committed
18
import torch.nn.functional as F
19
20
from torch import nn

Will Berman's avatar
Will Berman committed
21
from ..utils.import_utils import is_xformers_available
22
from .cross_attention import CrossAttention
Kashif Rasul's avatar
Kashif Rasul committed
23
from .embeddings import CombinedTimestepLabelEmbeddings
24
25
26
27
28
29
30
31


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

32

33
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
38
39
40
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
41
42
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
43
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
44
45
46
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
47
48
    """

Will Berman's avatar
Will Berman committed
49
50
    # IMPORTANT;TODO(Patrick, William) - this class will be deprecated soon. Do not use it anymore

Patrick von Platen's avatar
Patrick von Platen committed
51
52
    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
53
54
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
55
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
56
57
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
62
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
63
        self.num_head_size = num_head_channels
Will Berman's avatar
Will Berman committed
64
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
68
69
70
71

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
72
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
73

74
        self._use_memory_efficient_attention_xformers = False
75
        self._attention_op = None
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

91
92
93
    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
    ):
94
95
96
        if use_memory_efficient_attention_xformers:
            if not is_xformers_available():
                raise ModuleNotFoundError(
Patrick von Platen's avatar
Patrick von Platen committed
97
98
99
100
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
101
102
103
104
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
105
106
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
107
                )
108
109
110
111
112
113
114
115
116
117
118
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e
        self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
119
        self._attention_op = attention_op
120

Patrick von Platen's avatar
Patrick von Platen committed
121
122
123
124
125
126
    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
127

Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
131
132
133
134
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

135
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
136

Suraj Patil's avatar
Suraj Patil committed
137
138
139
140
        query_proj = self.reshape_heads_to_batch_dim(query_proj)
        key_proj = self.reshape_heads_to_batch_dim(key_proj)
        value_proj = self.reshape_heads_to_batch_dim(value_proj)

141
142
        if self._use_memory_efficient_attention_xformers:
            # Memory efficient attention
143
144
145
            hidden_states = xformers.ops.memory_efficient_attention(
                query_proj, key_proj, value_proj, attn_bias=None, op=self._attention_op
            )
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            hidden_states = hidden_states.to(query_proj.dtype)
        else:
            attention_scores = torch.baddbmm(
                torch.empty(
                    query_proj.shape[0],
                    query_proj.shape[1],
                    key_proj.shape[1],
                    dtype=query_proj.dtype,
                    device=query_proj.device,
                ),
                query_proj,
                key_proj.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )
            attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
            hidden_states = torch.bmm(attention_probs, value_proj)
Patrick von Platen's avatar
Patrick von Platen committed
163

Suraj Patil's avatar
Suraj Patil committed
164
165
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
166
167

        # compute next hidden_states
168
        hidden_states = self.proj_attn(hidden_states)
Will Berman's avatar
Will Berman committed
169

Patrick von Platen's avatar
Patrick von Platen committed
170
171
172
173
174
175
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
176

Patrick von Platen's avatar
Patrick von Platen committed
177
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
178
179
180
181
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
182
183
184
185
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
186
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
187
188
189
190
191
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
192
193
194
195
196
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
197
198
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
199
        dropout=0.0,
Will Berman's avatar
Will Berman committed
200
201
202
203
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
204
        only_cross_attention: bool = False,
205
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
206
207
208
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
209
    ):
Patrick von Platen's avatar
Patrick von Platen committed
210
        super().__init__()
211
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
212
213
214
215
216
217
218
219
220

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
221
222

        # 1. Self-Attn
Patrick von Platen's avatar
Patrick von Platen committed
223
        self.attn1 = CrossAttention(
Will Berman's avatar
Will Berman committed
224
225
226
227
228
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
229
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
230
            upcast_attention=upcast_attention,
231
232
        )

Kashif Rasul's avatar
Kashif Rasul committed
233
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
Will Berman's avatar
Will Berman committed
234

235
236
237
238
239
240
241
242
243
        # 2. Cross-Attn
        if cross_attention_dim is not None:
            self.attn2 = CrossAttention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
244
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
245
            )  # is self-attn if encoder_hidden_states is none
Will Berman's avatar
Will Berman committed
246
        else:
247
248
            self.attn2 = None

Kashif Rasul's avatar
Kashif Rasul committed
249
250
251
252
253
254
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
255
256

        if cross_attention_dim is not None:
Kashif Rasul's avatar
Kashif Rasul committed
257
258
259
260
261
262
263
264
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
265
266
267
268
        else:
            self.norm2 = None

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
269
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
Patrick von Platen's avatar
Patrick von Platen committed
270

271
272
273
274
275
276
277
    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        timestep=None,
        attention_mask=None,
        cross_attention_kwargs=None,
Kashif Rasul's avatar
Kashif Rasul committed
278
        class_labels=None,
279
    ):
Kashif Rasul's avatar
Kashif Rasul committed
280
281
282
283
284
285
286
287
288
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

Will Berman's avatar
Will Berman committed
289
        # 1. Self-Attention
290
291
292
293
294
295
296
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
Kashif Rasul's avatar
Kashif Rasul committed
297
298
        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
299
        hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
300

301
302
303
304
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
Kashif Rasul's avatar
Kashif Rasul committed
305
306

            # 2. Cross-Attention
307
308
309
310
311
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
312
            )
313
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
314
315

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
316
317
318
319
320
321
322
323
324
325
326
        norm_hidden_states = self.norm3(hidden_states)

        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        ff_output = self.ff(norm_hidden_states)

        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states
Will Berman's avatar
Will Berman committed
327

328
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
329
330
331


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
332
333
334
335
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
336
337
338
339
340
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
341
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
Kashif Rasul's avatar
Kashif Rasul committed
342
343
344
    """

    def __init__(
Will Berman's avatar
Will Berman committed
345
346
347
348
349
350
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
351
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
352
    ):
Patrick von Platen's avatar
Patrick von Platen committed
353
354
        super().__init__()
        inner_dim = int(dim * mult)
355
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
356

357
358
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
Kashif Rasul's avatar
Kashif Rasul committed
359
360
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
361
362
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
363
        elif activation_fn == "geglu-approximate":
364
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
365
366

        self.net = nn.ModuleList([])
367
        # project in
368
        self.net.append(act_fn)
369
370
371
372
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Kashif Rasul's avatar
Kashif Rasul committed
373
374
375
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
376

377
    def forward(self, hidden_states):
378
379
380
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
381

Patrick von Platen's avatar
Patrick von Platen committed
382

383
384
class GELU(nn.Module):
    r"""
Kashif Rasul's avatar
Kashif Rasul committed
385
    GELU activation function with tanh approximation support with `approximate="tanh"`.
386
387
    """

Kashif Rasul's avatar
Kashif Rasul committed
388
    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
389
390
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)
Kashif Rasul's avatar
Kashif Rasul committed
391
        self.approximate = approximate
392
393
394

    def gelu(self, gate):
        if gate.device.type != "mps":
Kashif Rasul's avatar
Kashif Rasul committed
395
            return F.gelu(gate, approximate=self.approximate)
396
        # mps: gelu is not implemented for float16
Kashif Rasul's avatar
Kashif Rasul committed
397
        return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
398
399
400
401
402
403
404

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
405
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
406
407
408
409
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
410
411
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
412
413
414
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
415
416
417
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

418
419
420
421
422
423
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

424
425
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
426
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
Kashif Rasul's avatar
Kashif Rasul committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482


class AdaLayerNormZero(nn.Module):
    """
    Norm layer adaptive layer norm zero (adaLN-Zero).
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()

        self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, timestep, class_labels, hidden_dtype=None):
        emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517


class AdaGroupNorm(nn.Module):
    """
    GroupNorm layer modified to incorporate timestep embeddings.
    """

    def __init__(
        self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
    ):
        super().__init__()
        self.num_groups = num_groups
        self.eps = eps
        self.act = None
        if act_fn == "swish":
            self.act = lambda x: F.silu(x)
        elif act_fn == "mish":
            self.act = nn.Mish()
        elif act_fn == "silu":
            self.act = nn.SiLU()
        elif act_fn == "gelu":
            self.act = nn.GELU()

        self.linear = nn.Linear(embedding_dim, out_dim * 2)

    def forward(self, x, emb):
        if self.act:
            emb = self.act(emb)
        emb = self.linear(emb)
        emb = emb[:, :, None, None]
        scale, shift = emb.chunk(2, dim=1)

        x = F.group_norm(x, self.num_groups, eps=self.eps)
        x = x * (1 + scale) + shift
        return x