attention.py 21 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
from typing import Callable, Optional
16
17

import torch
Patrick von Platen's avatar
Patrick von Platen committed
18
import torch.nn.functional as F
19
20
from torch import nn

Will Berman's avatar
Will Berman committed
21
from ..utils.import_utils import is_xformers_available
Patrick von Platen's avatar
Patrick von Platen committed
22
from .attention_processor import Attention
Kashif Rasul's avatar
Kashif Rasul committed
23
from .embeddings import CombinedTimestepLabelEmbeddings
24
25
26
27
28
29
30
31


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

32

33
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
38
39
40
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
41
42
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
43
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
44
45
46
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
47
48
    """

Will Berman's avatar
Will Berman committed
49
50
    # IMPORTANT;TODO(Patrick, William) - this class will be deprecated soon. Do not use it anymore

Patrick von Platen's avatar
Patrick von Platen committed
51
52
    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
53
54
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
55
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
56
57
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
62
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Will Berman's avatar
Will Berman committed
63
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66
67
68
69
70

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Alexander Pivovarov's avatar
Alexander Pivovarov committed
71
        self.proj_attn = nn.Linear(channels, channels, bias=True)
Patrick von Platen's avatar
Patrick von Platen committed
72

73
        self._use_memory_efficient_attention_xformers = False
74
        self._use_2_0_attn = True
75
        self._attention_op = None
76

77
    def reshape_heads_to_batch_dim(self, tensor, merge_head_and_batch=True):
78
79
80
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
81
82
83
        tensor = tensor.permute(0, 2, 1, 3)
        if merge_head_and_batch:
            tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
84
85
        return tensor

86
    def reshape_batch_dim_to_heads(self, tensor, unmerge_head_and_batch=True):
87
        head_size = self.num_heads
88
89

        if unmerge_head_and_batch:
90
91
92
93
            batch_head_size, seq_len, dim = tensor.shape
            batch_size = batch_head_size // head_size

            tensor = tensor.reshape(batch_size, head_size, seq_len, dim)
94
95
96
97
        else:
            batch_size, _, seq_len, dim = tensor.shape

        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size, seq_len, dim * head_size)
98
99
        return tensor

100
101
102
    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
    ):
103
104
105
        if use_memory_efficient_attention_xformers:
            if not is_xformers_available():
                raise ModuleNotFoundError(
Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
109
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
110
111
112
113
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
114
115
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
116
                )
117
118
119
120
121
122
123
124
125
126
127
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e
        self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
128
        self._attention_op = attention_op
129

Patrick von Platen's avatar
Patrick von Platen committed
130
131
132
133
134
135
    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
136

Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
140
141
142
143
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

144
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
145

146
147
        _use_2_0_attn = self._use_2_0_attn and not self._use_memory_efficient_attention_xformers
        use_torch_2_0_attn = hasattr(F, "scaled_dot_product_attention") and _use_2_0_attn
148
149
150
151

        query_proj = self.reshape_heads_to_batch_dim(query_proj, merge_head_and_batch=not use_torch_2_0_attn)
        key_proj = self.reshape_heads_to_batch_dim(key_proj, merge_head_and_batch=not use_torch_2_0_attn)
        value_proj = self.reshape_heads_to_batch_dim(value_proj, merge_head_and_batch=not use_torch_2_0_attn)
Suraj Patil's avatar
Suraj Patil committed
152

153
154
        if self._use_memory_efficient_attention_xformers:
            # Memory efficient attention
155
            hidden_states = xformers.ops.memory_efficient_attention(
156
157
158
159
160
161
162
163
                query_proj, key_proj, value_proj, attn_bias=None, op=self._attention_op, scale=scale
            )
            hidden_states = hidden_states.to(query_proj.dtype)
        elif use_torch_2_0_attn:
            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            hidden_states = F.scaled_dot_product_attention(
                query_proj, key_proj, value_proj, dropout_p=0.0, is_causal=False
164
            )
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
            hidden_states = hidden_states.to(query_proj.dtype)
        else:
            attention_scores = torch.baddbmm(
                torch.empty(
                    query_proj.shape[0],
                    query_proj.shape[1],
                    key_proj.shape[1],
                    dtype=query_proj.dtype,
                    device=query_proj.device,
                ),
                query_proj,
                key_proj.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )
            attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
            hidden_states = torch.bmm(attention_probs, value_proj)
Patrick von Platen's avatar
Patrick von Platen committed
182

Suraj Patil's avatar
Suraj Patil committed
183
        # reshape hidden_states
184
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states, unmerge_head_and_batch=not use_torch_2_0_attn)
Patrick von Platen's avatar
Patrick von Platen committed
185
186

        # compute next hidden_states
187
        hidden_states = self.proj_attn(hidden_states)
Will Berman's avatar
Will Berman committed
188

Patrick von Platen's avatar
Patrick von Platen committed
189
190
191
192
193
194
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
195

Patrick von Platen's avatar
Patrick von Platen committed
196
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
197
198
199
200
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
201
202
203
204
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
205
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
206
207
208
209
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
Will Berman's avatar
Will Berman committed
210
211
212
213
214
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
215
216
217
218
219
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
220
221
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
222
        dropout=0.0,
Will Berman's avatar
Will Berman committed
223
224
225
226
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
227
        only_cross_attention: bool = False,
228
        double_self_attention: bool = False,
229
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
230
231
232
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
233
    ):
Patrick von Platen's avatar
Patrick von Platen committed
234
        super().__init__()
235
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
236
237
238
239
240
241
242
243
244

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
245

246
        # Define 3 blocks. Each block has its own normalization layer.
247
        # 1. Self-Attn
248
249
250
251
252
253
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
Patrick von Platen's avatar
Patrick von Platen committed
254
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
255
256
257
258
259
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
260
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
261
            upcast_attention=upcast_attention,
262
263
        )

264
        # 2. Cross-Attn
265
        if cross_attention_dim is not None or double_self_attention:
266
267
268
269
270
271
272
273
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
Patrick von Platen's avatar
Patrick von Platen committed
274
            self.attn2 = Attention(
275
                query_dim=dim,
276
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
277
278
279
280
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
281
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
282
            )  # is self-attn if encoder_hidden_states is none
283
284
        else:
            self.norm2 = None
285
            self.attn2 = None
286
287

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
288
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
289
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
Patrick von Platen's avatar
Patrick von Platen committed
290

291
292
293
    def forward(
        self,
        hidden_states,
294
        attention_mask=None,
295
        encoder_hidden_states=None,
296
        encoder_attention_mask=None,
297
298
        timestep=None,
        cross_attention_kwargs=None,
Kashif Rasul's avatar
Kashif Rasul committed
299
        class_labels=None,
300
    ):
301
302
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 1. Self-Attention
Kashif Rasul's avatar
Kashif Rasul committed
303
304
305
306
307
308
309
310
311
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

312
313
314
315
316
317
318
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
Kashif Rasul's avatar
Kashif Rasul committed
319
320
        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
321
        hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
322

323
        # 2. Cross-Attention
324
325
326
327
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
328
329
            # TODO (Birch-San): Here we should prepare the encoder_attention mask correctly
            # prepare attention mask here
Kashif Rasul's avatar
Kashif Rasul committed
330

331
332
333
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
334
                attention_mask=encoder_attention_mask,
335
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
336
            )
337
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
338
339

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
340
341
342
343
344
345
346
347
348
349
350
        norm_hidden_states = self.norm3(hidden_states)

        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        ff_output = self.ff(norm_hidden_states)

        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states
Will Berman's avatar
Will Berman committed
351

352
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
353
354
355


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
356
357
358
359
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
360
361
362
363
364
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
365
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
Kashif Rasul's avatar
Kashif Rasul committed
366
367
368
    """

    def __init__(
Will Berman's avatar
Will Berman committed
369
370
371
372
373
374
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
375
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
376
    ):
Patrick von Platen's avatar
Patrick von Platen committed
377
378
        super().__init__()
        inner_dim = int(dim * mult)
379
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
380

381
382
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
Kashif Rasul's avatar
Kashif Rasul committed
383
384
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
385
386
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
387
        elif activation_fn == "geglu-approximate":
388
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
389
390

        self.net = nn.ModuleList([])
391
        # project in
392
        self.net.append(act_fn)
393
394
395
396
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Kashif Rasul's avatar
Kashif Rasul committed
397
398
399
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
400

401
    def forward(self, hidden_states):
402
403
404
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
405

Patrick von Platen's avatar
Patrick von Platen committed
406

407
408
class GELU(nn.Module):
    r"""
Kashif Rasul's avatar
Kashif Rasul committed
409
    GELU activation function with tanh approximation support with `approximate="tanh"`.
410
411
    """

Kashif Rasul's avatar
Kashif Rasul committed
412
    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
413
414
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)
Kashif Rasul's avatar
Kashif Rasul committed
415
        self.approximate = approximate
416
417
418

    def gelu(self, gate):
        if gate.device.type != "mps":
Kashif Rasul's avatar
Kashif Rasul committed
419
            return F.gelu(gate, approximate=self.approximate)
420
        # mps: gelu is not implemented for float16
Kashif Rasul's avatar
Kashif Rasul committed
421
        return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
422
423
424
425
426
427
428

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
429
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
430
431
432
433
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
434
435
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
436
437
438
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
439
440
441
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

442
443
444
445
446
447
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

448
449
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
450
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
Kashif Rasul's avatar
Kashif Rasul committed
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506


class AdaLayerNormZero(nn.Module):
    """
    Norm layer adaptive layer norm zero (adaLN-Zero).
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()

        self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, timestep, class_labels, hidden_dtype=None):
        emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541


class AdaGroupNorm(nn.Module):
    """
    GroupNorm layer modified to incorporate timestep embeddings.
    """

    def __init__(
        self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
    ):
        super().__init__()
        self.num_groups = num_groups
        self.eps = eps
        self.act = None
        if act_fn == "swish":
            self.act = lambda x: F.silu(x)
        elif act_fn == "mish":
            self.act = nn.Mish()
        elif act_fn == "silu":
            self.act = nn.SiLU()
        elif act_fn == "gelu":
            self.act = nn.GELU()

        self.linear = nn.Linear(embedding_dim, out_dim * 2)

    def forward(self, x, emb):
        if self.act:
            emb = self.act(emb)
        emb = self.linear(emb)
        emb = emb[:, :, None, None]
        scale, shift = emb.chunk(2, dim=1)

        x = F.group_norm(x, self.num_groups, eps=self.eps)
        x = x * (1 + scale) + shift
        return x