attention.py 27.3 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional
15
16

import torch
Will Berman's avatar
Will Berman committed
17
import torch.nn.functional as F
18
19
from torch import nn

20
from ..utils import deprecate, logging
Dhruv Nair's avatar
Dhruv Nair committed
21
from ..utils.torch_utils import maybe_allow_in_graph
22
from .activations import GEGLU, GELU, ApproximateGELU
Patrick von Platen's avatar
Patrick von Platen committed
23
from .attention_processor import Attention
Dhruv Nair's avatar
Dhruv Nair committed
24
from .embeddings import SinusoidalPositionalEmbedding
Will Berman's avatar
Will Berman committed
25
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
26
27


28
29
30
31
logger = logging.get_logger(__name__)


def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
Suraj Patil's avatar
Suraj Patil committed
32
33
34
35
36
37
38
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
39
40
41
42
    ff_output = torch.cat(
        [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
        dim=chunk_dim,
    )
Suraj Patil's avatar
Suraj Patil committed
43
44
45
    return ff_output


46
47
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
48
49
50
51
52
53
54
55
56
57
58
    r"""
    A gated self-attention dense layer that combines visual features and object features.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        context_dim (`int`): The number of channels in the context.
        n_heads (`int`): The number of heads to use for attention.
        d_head (`int`): The number of channels in each head.
    """

    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

75
    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
76
77
78
79
80
81
82
83
84
85
86
87
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


88
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
89
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
90
91
92
93
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
94
95
96
97
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
98
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
99
100
101
102
103
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
Dhruv Nair's avatar
Dhruv Nair committed
118
119
120
121
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
Kashif Rasul's avatar
Kashif Rasul committed
122
123
124
125
126
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
127
128
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
129
        dropout=0.0,
Will Berman's avatar
Will Berman committed
130
131
132
133
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
134
        only_cross_attention: bool = False,
135
        double_self_attention: bool = False,
136
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
137
        norm_elementwise_affine: bool = True,
138
        norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
Sayak Paul's avatar
Sayak Paul committed
139
        norm_eps: float = 1e-5,
Kashif Rasul's avatar
Kashif Rasul committed
140
        final_dropout: bool = False,
141
        attention_type: str = "default",
Dhruv Nair's avatar
Dhruv Nair committed
142
143
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
Will Berman's avatar
Will Berman committed
144
145
146
147
148
        ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
        ada_norm_bias: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
149
    ):
Patrick von Platen's avatar
Patrick von Platen committed
150
        super().__init__()
151
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
152

153
        # We keep these boolean flags for backward-compatibility.
154
155
156
157
158
159
        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
        self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
        self.use_layer_norm = norm_type == "layer_norm"
        self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"

Kashif Rasul's avatar
Kashif Rasul committed
160
161
162
163
164
        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
165

166
167
168
        self.norm_type = norm_type
        self.num_embeds_ada_norm = num_embeds_ada_norm

Dhruv Nair's avatar
Dhruv Nair committed
169
170
171
172
173
174
175
176
177
178
        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

179
        # Define 3 blocks. Each block has its own normalization layer.
180
        # 1. Self-Attn
181
        if norm_type == "ada_norm":
182
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
183
        elif norm_type == "ada_norm_zero":
184
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
185
        elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
186
187
188
189
190
191
192
193
            self.norm1 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "rms_norm",
            )
194
        else:
Sayak Paul's avatar
Sayak Paul committed
195
196
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

Patrick von Platen's avatar
Patrick von Platen committed
197
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
198
199
200
201
202
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
203
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
204
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
205
            out_bias=attention_out_bias,
206
207
        )

208
        # 2. Cross-Attn
209
        if cross_attention_dim is not None or double_self_attention:
210
211
212
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
213
            if norm_type == "ada_norm":
Will Berman's avatar
Will Berman committed
214
                self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
215
            elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
216
217
218
219
220
221
222
223
224
225
226
                self.norm2 = AdaLayerNormContinuous(
                    dim,
                    ada_norm_continous_conditioning_embedding_dim,
                    norm_elementwise_affine,
                    norm_eps,
                    ada_norm_bias,
                    "rms_norm",
                )
            else:
                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

Patrick von Platen's avatar
Patrick von Platen committed
227
            self.attn2 = Attention(
228
                query_dim=dim,
229
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
230
231
232
233
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
234
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
235
                out_bias=attention_out_bias,
Will Berman's avatar
Will Berman committed
236
            )  # is self-attn if encoder_hidden_states is none
237
238
        else:
            self.norm2 = None
239
            self.attn2 = None
240
241

        # 3. Feed-forward
242
        if norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
243
244
245
246
247
248
249
250
            self.norm3 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "layer_norm",
            )
251
252

        elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]:
Will Berman's avatar
Will Berman committed
253
            self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
254
255
        elif norm_type == "layer_norm_i2vgen":
            self.norm3 = None
Sayak Paul's avatar
Sayak Paul committed
256

Suraj Patil's avatar
Suraj Patil committed
257
258
259
260
261
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
Will Berman's avatar
Will Berman committed
262
263
            inner_dim=ff_inner_dim,
            bias=ff_bias,
Suraj Patil's avatar
Suraj Patil committed
264
        )
Patrick von Platen's avatar
Patrick von Platen committed
265

266
        # 4. Fuser
267
        if attention_type == "gated" or attention_type == "gated-text-image":
268
269
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

Sayak Paul's avatar
Sayak Paul committed
270
        # 5. Scale-shift for PixArt-Alpha.
271
        if norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
272
273
            self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

274
275
276
277
        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

Suraj Patil's avatar
Suraj Patil committed
278
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
279
280
281
282
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

283
284
    def forward(
        self,
285
286
287
288
289
290
291
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
Will Berman's avatar
Will Berman committed
292
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
293
    ) -> torch.FloatTensor:
294
295
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
296
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
297

298
        # Notice that normalization is always applied before the real computation in the following blocks.
299
        # 0. Self-Attention
Sayak Paul's avatar
Sayak Paul committed
300
301
        batch_size = hidden_states.shape[0]

302
        if self.norm_type == "ada_norm":
Kashif Rasul's avatar
Kashif Rasul committed
303
            norm_hidden_states = self.norm1(hidden_states, timestep)
304
        elif self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
305
306
307
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
308
        elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
Kashif Rasul's avatar
Kashif Rasul committed
309
            norm_hidden_states = self.norm1(hidden_states)
310
        elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
311
            norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
312
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
313
314
315
316
317
318
319
320
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
            norm_hidden_states = self.norm1(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
            norm_hidden_states = norm_hidden_states.squeeze(1)
        else:
            raise ValueError("Incorrect norm used")
Kashif Rasul's avatar
Kashif Rasul committed
321

Dhruv Nair's avatar
Dhruv Nair committed
322
323
324
        if self.pos_embed is not None:
            norm_hidden_states = self.pos_embed(norm_hidden_states)

325
        # 1. Prepare GLIGEN inputs
326
327
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
328

329
330
331
332
333
334
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
335
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
336
            attn_output = gate_msa.unsqueeze(1) * attn_output
337
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
338
339
            attn_output = gate_msa * attn_output

340
        hidden_states = attn_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
341
342
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
343

344
        # 1.2 GLIGEN Control
345
346
347
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

348
        # 3. Cross-Attention
349
        if self.attn2 is not None:
350
            if self.norm_type == "ada_norm":
Sayak Paul's avatar
Sayak Paul committed
351
                norm_hidden_states = self.norm2(hidden_states, timestep)
352
            elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
Sayak Paul's avatar
Sayak Paul committed
353
                norm_hidden_states = self.norm2(hidden_states)
354
            elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
355
356
357
                # For PixArt norm2 isn't applied here:
                # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                norm_hidden_states = hidden_states
358
            elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
359
                norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
Sayak Paul's avatar
Sayak Paul committed
360
361
362
            else:
                raise ValueError("Incorrect norm")

363
            if self.pos_embed is not None and self.norm_type != "ada_norm_single":
Dhruv Nair's avatar
Dhruv Nair committed
364
                norm_hidden_states = self.pos_embed(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
365

366
367
368
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
369
                attention_mask=encoder_attention_mask,
370
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
371
            )
372
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
373

374
        # 4. Feed-forward
375
376
        # i2vgen doesn't have this norm 🤷‍♂️
        if self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
377
            norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
378
        elif not self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
379
            norm_hidden_states = self.norm3(hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
380

381
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
382
383
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

384
        if self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
385
386
387
            norm_hidden_states = self.norm2(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

388
389
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
390
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
391
        else:
392
            ff_output = self.ff(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
393

394
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
395
            ff_output = gate_mlp.unsqueeze(1) * ff_output
396
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
397
            ff_output = gate_mlp * ff_output
Kashif Rasul's avatar
Kashif Rasul committed
398
399

        hidden_states = ff_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
400
401
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
402

403
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
404
405


Suraj Patil's avatar
Suraj Patil committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
@maybe_allow_in_graph
class TemporalBasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block for video like data.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        time_mix_inner_dim (`int`): The number of channels for temporal attention.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
    """

    def __init__(
        self,
        dim: int,
        time_mix_inner_dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        cross_attention_dim: Optional[int] = None,
    ):
        super().__init__()
        self.is_res = dim == time_mix_inner_dim

        self.norm_in = nn.LayerNorm(dim)

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.ff_in = FeedForward(
            dim,
            dim_out=time_mix_inner_dim,
            activation_fn="geglu",
        )

        self.norm1 = nn.LayerNorm(time_mix_inner_dim)
        self.attn1 = Attention(
            query_dim=time_mix_inner_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            cross_attention_dim=None,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None:
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = nn.LayerNorm(time_mix_inner_dim)
            self.attn2 = Attention(
                query_dim=time_mix_inner_dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(time_mix_inner_dim)
        self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = None

    def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
        self._chunk_dim = 1

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        num_frames: int,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        batch_frames, seq_length, channels = hidden_states.shape
        batch_size = batch_frames // num_frames

        hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)

        residual = hidden_states
        hidden_states = self.norm_in(hidden_states)

        if self._chunk_size is not None:
Dhruv Nair's avatar
Dhruv Nair committed
499
            hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
Suraj Patil's avatar
Suraj Patil committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        else:
            hidden_states = self.ff_in(hidden_states)

        if self.is_res:
            hidden_states = hidden_states + residual

        norm_hidden_states = self.norm1(hidden_states)
        attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
        hidden_states = attn_output + hidden_states

        # 3. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = self.norm2(hidden_states)
            attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self._chunk_size is not None:
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        if self.is_res:
            hidden_states = ff_output + hidden_states
        else:
            hidden_states = ff_output

        hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)

        return hidden_states


Will Berman's avatar
Will Berman committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
class SkipFFTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        kv_input_dim: int,
        kv_input_dim_proj_use_bias: bool,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        attention_out_bias: bool = True,
    ):
        super().__init__()
        if kv_input_dim != dim:
            self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
        else:
            self.kv_mapper = None

        self.norm1 = RMSNorm(dim, 1e-06)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim,
            out_bias=attention_out_bias,
        )

        self.norm2 = RMSNorm(dim, 1e-06)

        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            out_bias=attention_out_bias,
        )

    def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}

        if self.kv_mapper is not None:
            encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))

        norm_hidden_states = self.norm1(hidden_states)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        norm_hidden_states = self.norm2(hidden_states)

        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
608
class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
609
610
611
612
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
613
614
615
616
617
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
618
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
619
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
Kashif Rasul's avatar
Kashif Rasul committed
620
621
622
    """

    def __init__(
Will Berman's avatar
Will Berman committed
623
624
625
626
627
628
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
629
        final_dropout: bool = False,
Will Berman's avatar
Will Berman committed
630
        inner_dim=None,
631
        bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
632
    ):
Patrick von Platen's avatar
Patrick von Platen committed
633
        super().__init__()
Will Berman's avatar
Will Berman committed
634
635
        if inner_dim is None:
            inner_dim = int(dim * mult)
636
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
637

638
        if activation_fn == "gelu":
639
            act_fn = GELU(dim, inner_dim, bias=bias)
Kashif Rasul's avatar
Kashif Rasul committed
640
        if activation_fn == "gelu-approximate":
641
            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
642
        elif activation_fn == "geglu":
643
            act_fn = GEGLU(dim, inner_dim, bias=bias)
Will Berman's avatar
Will Berman committed
644
        elif activation_fn == "geglu-approximate":
645
            act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
Will Berman's avatar
Will Berman committed
646
647

        self.net = nn.ModuleList([])
648
        # project in
649
        self.net.append(act_fn)
650
651
652
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
653
        self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
Kashif Rasul's avatar
Kashif Rasul committed
654
655
656
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
657

658
659
660
661
    def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
662
        for module in self.net:
663
            hidden_states = module(hidden_states)
664
        return hidden_states