"src/vscode:/vscode.git/clone" did not exist on "7271f8b7170923944e193dac5b8513bbbb3b883f"
attention.py 71.4 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15

from typing import Any, Callable, Dict, List, Optional, Tuple, Union
16
17

import torch
18
import torch.nn as nn
Will Berman's avatar
Will Berman committed
19
import torch.nn.functional as F
20

21
from ..utils import deprecate, logging
22
from ..utils.import_utils import is_torch_npu_available, is_torch_xla_available, is_xformers_available
Dhruv Nair's avatar
Dhruv Nair committed
23
from ..utils.torch_utils import maybe_allow_in_graph
Aryan's avatar
Aryan committed
24
from .activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, LinearActivation, SwiGLU
25
from .attention_processor import Attention, AttentionProcessor, JointAttnProcessor2_0
Dhruv Nair's avatar
Dhruv Nair committed
26
from .embeddings import SinusoidalPositionalEmbedding
YiYi Xu's avatar
YiYi Xu committed
27
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX
28
29


30
31
32
33
34
35
if is_xformers_available():
    import xformers as xops
else:
    xops = None


36
37
38
logger = logging.get_logger(__name__)


39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
class AttentionMixin:
    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def fuse_qkv_projections(self):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
        """
        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        for module in self.modules():
            if isinstance(module, AttentionModuleMixin):
                module.fuse_projections()

    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

Steven Liu's avatar
Steven Liu committed
114
        > [!WARNING] > This API is 🧪 experimental.
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        """
        for module in self.modules():
            if isinstance(module, AttentionModuleMixin):
                module.unfuse_projections()


class AttentionModuleMixin:
    _default_processor_cls = None
    _available_processors = []
    fused_projections = False

    def set_processor(self, processor: AttentionProcessor) -> None:
        """
        Set the attention processor to use.

        Args:
            processor (`AttnProcessor`):
                The attention processor to use.
        """
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

    def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
        """
        Get the attention processor in use.

        Args:
            return_deprecated_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to return the deprecated LoRA attention processor.

        Returns:
            "AttentionProcessor": The attention processor in use.
        """
        if not return_deprecated_lora:
            return self.processor

    def set_attention_backend(self, backend: str):
        from .attention_dispatch import AttentionBackendName

        available_backends = {x.value for x in AttentionBackendName.__members__.values()}
        if backend not in available_backends:
            raise ValueError(f"`{backend=}` must be one of the following: " + ", ".join(available_backends))

        backend = AttentionBackendName(backend.lower())
        self.processor._attention_backend = backend

    def set_use_npu_flash_attention(self, use_npu_flash_attention: bool) -> None:
        """
        Set whether to use NPU flash attention from `torch_npu` or not.

        Args:
            use_npu_flash_attention (`bool`): Whether to use NPU flash attention or not.
        """

        if use_npu_flash_attention:
            if not is_torch_npu_available():
                raise ImportError("torch_npu is not available")

        self.set_attention_backend("_native_npu")

    def set_use_xla_flash_attention(
        self,
        use_xla_flash_attention: bool,
        partition_spec: Optional[Tuple[Optional[str], ...]] = None,
        is_flux=False,
    ) -> None:
        """
        Set whether to use XLA flash attention from `torch_xla` or not.

        Args:
            use_xla_flash_attention (`bool`):
                Whether to use pallas flash attention kernel from `torch_xla` or not.
            partition_spec (`Tuple[]`, *optional*):
                Specify the partition specification if using SPMD. Otherwise None.
            is_flux (`bool`, *optional*, defaults to `False`):
                Whether the model is a Flux model.
        """
        if use_xla_flash_attention:
            if not is_torch_xla_available():
                raise ImportError("torch_xla is not available")

        self.set_attention_backend("_native_xla")

    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
    ) -> None:
        """
        Set whether to use memory efficient attention from `xformers` or not.

        Args:
            use_memory_efficient_attention_xformers (`bool`):
                Whether to use memory efficient attention from `xformers` or not.
            attention_op (`Callable`, *optional*):
                The attention operation to use. Defaults to `None` which uses the default attention operation from
                `xformers`.
        """
        if use_memory_efficient_attention_xformers:
            if not is_xformers_available():
                raise ModuleNotFoundError(
                    "Refer to https://github.com/facebookresearch/xformers for more information on how to install xformers",
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    if is_xformers_available():
                        dtype = None
                        if attention_op is not None:
                            op_fw, op_bw = attention_op
                            dtype, *_ = op_fw.SUPPORTED_DTYPES
                        q = torch.randn((1, 2, 40), device="cuda", dtype=dtype)
240
                        _ = xops.ops.memory_efficient_attention(q, q, q)
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
                except Exception as e:
                    raise e

                self.set_attention_backend("xformers")

    @torch.no_grad()
    def fuse_projections(self):
        """
        Fuse the query, key, and value projections into a single projection for efficiency.
        """
        # Skip if already fused
        if getattr(self, "fused_projections", False):
            return

        device = self.to_q.weight.data.device
        dtype = self.to_q.weight.data.dtype

        if hasattr(self, "is_cross_attention") and self.is_cross_attention:
            # Fuse cross-attention key-value projections
            concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

            self.to_kv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
            self.to_kv.weight.copy_(concatenated_weights)
            if hasattr(self, "use_bias") and self.use_bias:
                concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data])
                self.to_kv.bias.copy_(concatenated_bias)
        else:
            # Fuse self-attention projections
            concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

            self.to_qkv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
            self.to_qkv.weight.copy_(concatenated_weights)
            if hasattr(self, "use_bias") and self.use_bias:
                concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
                self.to_qkv.bias.copy_(concatenated_bias)

        # Handle added projections for models like SD3, Flux, etc.
        if (
            getattr(self, "add_q_proj", None) is not None
            and getattr(self, "add_k_proj", None) is not None
            and getattr(self, "add_v_proj", None) is not None
        ):
            concatenated_weights = torch.cat(
                [self.add_q_proj.weight.data, self.add_k_proj.weight.data, self.add_v_proj.weight.data]
            )
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

            self.to_added_qkv = nn.Linear(
                in_features, out_features, bias=self.added_proj_bias, device=device, dtype=dtype
            )
            self.to_added_qkv.weight.copy_(concatenated_weights)
            if self.added_proj_bias:
                concatenated_bias = torch.cat(
                    [self.add_q_proj.bias.data, self.add_k_proj.bias.data, self.add_v_proj.bias.data]
                )
                self.to_added_qkv.bias.copy_(concatenated_bias)

        self.fused_projections = True

    @torch.no_grad()
    def unfuse_projections(self):
        """
        Unfuse the query, key, and value projections back to separate projections.
        """
        # Skip if not fused
        if not getattr(self, "fused_projections", False):
            return

        # Remove fused projection layers
        if hasattr(self, "to_qkv"):
            delattr(self, "to_qkv")

        if hasattr(self, "to_kv"):
            delattr(self, "to_kv")

        if hasattr(self, "to_added_qkv"):
            delattr(self, "to_added_qkv")

        self.fused_projections = False

    def set_attention_slice(self, slice_size: int) -> None:
        """
        Set the slice size for attention computation.

        Args:
            slice_size (`int`):
                The slice size for attention computation.
        """
        if hasattr(self, "sliceable_head_dim") and slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        processor = None

        # Try to get a compatible processor for sliced attention
        if slice_size is not None:
            processor = self._get_compatible_processor("sliced")

        # If no processor was found or slice_size is None, use default processor
        if processor is None:
            processor = self.default_processor_cls()

        self.set_processor(processor)

    def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
        """
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
        """
        Reshape the tensor for multi-head attention processing.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.
            out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
        head_size = self.heads
        if tensor.ndim == 3:
            batch_size, seq_len, dim = tensor.shape
            extra_dim = 1
        else:
            batch_size, extra_dim, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3)

        if out_dim == 3:
            tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size)

        return tensor

    def get_attention_scores(
        self, query: torch.Tensor, key: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        """
        Compute the attention scores.

        Args:
            query (`torch.Tensor`): The query tensor.
            key (`torch.Tensor`): The key tensor.
            attention_mask (`torch.Tensor`, *optional*): The attention mask to use.

        Returns:
            `torch.Tensor`: The attention probabilities/scores.
        """
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

        attention_scores = torch.baddbmm(
            baddbmm_input,
            query,
            key.transpose(-1, -2),
            beta=beta,
            alpha=self.scale,
        )
        del baddbmm_input

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
        del attention_scores

        attention_probs = attention_probs.to(dtype)

        return attention_probs

    def prepare_attention_mask(
        self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3
    ) -> torch.Tensor:
        """
        Prepare the attention mask for the attention computation.

        Args:
            attention_mask (`torch.Tensor`): The attention mask to prepare.
            target_length (`int`): The target length of the attention mask.
            batch_size (`int`): The batch size for repeating the attention mask.
            out_dim (`int`, *optional*, defaults to `3`): Output dimension.

        Returns:
            `torch.Tensor`: The prepared attention mask.
        """
        head_size = self.heads
        if attention_mask is None:
            return attention_mask

        current_length: int = attention_mask.shape[-1]
        if current_length != target_length:
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
                padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat([attention_mask, padding], dim=2)
            else:
                # TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
                #       we want to instead pad by (0, remaining_length), where remaining_length is:
                #       remaining_length: int = target_length - current_length
                # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)

        if out_dim == 3:
            if attention_mask.shape[0] < batch_size * head_size:
                attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        elif out_dim == 4:
            attention_mask = attention_mask.unsqueeze(1)
            attention_mask = attention_mask.repeat_interleave(head_size, dim=1)

        return attention_mask

    def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
        """
        Normalize the encoder hidden states.

        Args:
            encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.

        Returns:
            `torch.Tensor`: The normalized encoder hidden states.
        """
        assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
        if isinstance(self.norm_cross, nn.LayerNorm):
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
        elif isinstance(self.norm_cross, nn.GroupNorm):
            # Group norm norms along the channels dimension and expects
            # input to be in the shape of (N, C, *). In this case, we want
            # to norm along the hidden dimension, so we need to move
            # (batch_size, sequence_length, hidden_size) ->
            # (batch_size, hidden_size, sequence_length)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
        else:
            assert False

        return encoder_hidden_states


508
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
Suraj Patil's avatar
Suraj Patil committed
509
510
511
512
513
514
515
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
516
517
518
519
    ff_output = torch.cat(
        [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
        dim=chunk_dim,
    )
Suraj Patil's avatar
Suraj Patil committed
520
521
522
    return ff_output


523
524
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
525
526
527
528
529
530
531
532
533
534
535
    r"""
    A gated self-attention dense layer that combines visual features and object features.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        context_dim (`int`): The number of channels in the context.
        n_heads (`int`): The number of heads to use for attention.
        d_head (`int`): The number of channels in each head.
    """

    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

552
    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
553
554
555
556
557
558
559
560
561
562
563
564
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


Dhruv Nair's avatar
Dhruv Nair committed
565
566
567
568
569
@maybe_allow_in_graph
class JointTransformerBlock(nn.Module):
    r"""
    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.

Quentin Gallouédec's avatar
Quentin Gallouédec committed
570
    Reference: https://huggingface.co/papers/2403.03206
Dhruv Nair's avatar
Dhruv Nair committed
571
572
573
574
575
576
577
578
579

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
            processing of `context` conditions.
    """

YiYi Xu's avatar
YiYi Xu committed
580
581
582
583
584
585
586
587
588
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        context_pre_only: bool = False,
        qk_norm: Optional[str] = None,
        use_dual_attention: bool = False,
    ):
Dhruv Nair's avatar
Dhruv Nair committed
589
590
        super().__init__()

YiYi Xu's avatar
YiYi Xu committed
591
        self.use_dual_attention = use_dual_attention
Dhruv Nair's avatar
Dhruv Nair committed
592
593
594
        self.context_pre_only = context_pre_only
        context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"

YiYi Xu's avatar
YiYi Xu committed
595
596
597
598
        if use_dual_attention:
            self.norm1 = SD35AdaLayerNormZeroX(dim)
        else:
            self.norm1 = AdaLayerNormZero(dim)
Dhruv Nair's avatar
Dhruv Nair committed
599
600
601
602
603
604
605
606
607
608
609

        if context_norm_type == "ada_norm_continous":
            self.norm1_context = AdaLayerNormContinuous(
                dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
            )
        elif context_norm_type == "ada_norm_zero":
            self.norm1_context = AdaLayerNormZero(dim)
        else:
            raise ValueError(
                f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
            )
YiYi Xu's avatar
YiYi Xu committed
610

Dhruv Nair's avatar
Dhruv Nair committed
611
612
613
614
615
616
        if hasattr(F, "scaled_dot_product_attention"):
            processor = JointAttnProcessor2_0()
        else:
            raise ValueError(
                "The current PyTorch version does not support the `scaled_dot_product_attention` function."
            )
YiYi Xu's avatar
YiYi Xu committed
617

Dhruv Nair's avatar
Dhruv Nair committed
618
619
620
621
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            added_kv_proj_dim=dim,
622
            dim_head=attention_head_dim,
Dhruv Nair's avatar
Dhruv Nair committed
623
            heads=num_attention_heads,
624
            out_dim=dim,
Dhruv Nair's avatar
Dhruv Nair committed
625
626
627
            context_pre_only=context_pre_only,
            bias=True,
            processor=processor,
YiYi Xu's avatar
YiYi Xu committed
628
629
            qk_norm=qk_norm,
            eps=1e-6,
Dhruv Nair's avatar
Dhruv Nair committed
630
631
        )

YiYi Xu's avatar
YiYi Xu committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
        if use_dual_attention:
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=None,
                dim_head=attention_head_dim,
                heads=num_attention_heads,
                out_dim=dim,
                bias=True,
                processor=processor,
                qk_norm=qk_norm,
                eps=1e-6,
            )
        else:
            self.attn2 = None

Dhruv Nair's avatar
Dhruv Nair committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        if not context_pre_only:
            self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
            self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
        else:
            self.norm2_context = None
            self.ff_context = None

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
668
669
670
671
672
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor,
        temb: torch.FloatTensor,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
DefTruth's avatar
DefTruth committed
673
    ) -> Tuple[torch.Tensor, torch.Tensor]:
674
        joint_attention_kwargs = joint_attention_kwargs or {}
YiYi Xu's avatar
YiYi Xu committed
675
676
677
678
679
680
        if self.use_dual_attention:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
                hidden_states, emb=temb
            )
        else:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
Dhruv Nair's avatar
Dhruv Nair committed
681
682
683
684
685
686
687
688
689
690

        if self.context_pre_only:
            norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
        else:
            norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
                encoder_hidden_states, emb=temb
            )

        # Attention.
        attn_output, context_attn_output = self.attn(
691
692
693
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            **joint_attention_kwargs,
Dhruv Nair's avatar
Dhruv Nair committed
694
695
696
697
698
699
        )

        # Process attention outputs for the `hidden_states`.
        attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = hidden_states + attn_output

YiYi Xu's avatar
YiYi Xu committed
700
        if self.use_dual_attention:
701
            attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **joint_attention_kwargs)
YiYi Xu's avatar
YiYi Xu committed
702
703
704
            attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
            hidden_states = hidden_states + attn_output2

Dhruv Nair's avatar
Dhruv Nair committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = hidden_states + ff_output

        # Process attention outputs for the `encoder_hidden_states`.
        if self.context_pre_only:
            encoder_hidden_states = None
        else:
            context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
            encoder_hidden_states = encoder_hidden_states + context_attn_output

            norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
            norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
            if self._chunk_size is not None:
                # "feed_forward_chunk_size" can be used to save memory
                context_ff_output = _chunked_feed_forward(
                    self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
                )
            else:
                context_ff_output = self.ff_context(norm_encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output

        return encoder_hidden_states, hidden_states


737
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
738
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
739
740
741
742
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
743
744
745
746
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
747
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
748
749
750
751
752
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
753
754
755
756
757
758
759
760
761
762
763
764
765
766
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
Dhruv Nair's avatar
Dhruv Nair committed
767
768
769
770
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
Kashif Rasul's avatar
Kashif Rasul committed
771
772
773
774
775
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
776
777
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
778
        dropout=0.0,
Will Berman's avatar
Will Berman committed
779
780
781
782
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
783
        only_cross_attention: bool = False,
784
        double_self_attention: bool = False,
785
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
786
        norm_elementwise_affine: bool = True,
787
        norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
Sayak Paul's avatar
Sayak Paul committed
788
        norm_eps: float = 1e-5,
Kashif Rasul's avatar
Kashif Rasul committed
789
        final_dropout: bool = False,
790
        attention_type: str = "default",
Dhruv Nair's avatar
Dhruv Nair committed
791
792
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
Will Berman's avatar
Will Berman committed
793
794
795
796
797
        ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
        ada_norm_bias: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
798
    ):
Patrick von Platen's avatar
Patrick von Platen committed
799
        super().__init__()
Aryan's avatar
Aryan committed
800
801
802
803
804
805
806
807
808
809
810
        self.dim = dim
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.dropout = dropout
        self.cross_attention_dim = cross_attention_dim
        self.activation_fn = activation_fn
        self.attention_bias = attention_bias
        self.double_self_attention = double_self_attention
        self.norm_elementwise_affine = norm_elementwise_affine
        self.positional_embeddings = positional_embeddings
        self.num_positional_embeddings = num_positional_embeddings
811
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
812

813
        # We keep these boolean flags for backward-compatibility.
814
815
816
817
818
819
        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
        self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
        self.use_layer_norm = norm_type == "layer_norm"
        self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"

Kashif Rasul's avatar
Kashif Rasul committed
820
821
822
823
824
        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
825

826
827
828
        self.norm_type = norm_type
        self.num_embeds_ada_norm = num_embeds_ada_norm

Dhruv Nair's avatar
Dhruv Nair committed
829
830
831
832
833
834
835
836
837
838
        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

839
        # Define 3 blocks. Each block has its own normalization layer.
840
        # 1. Self-Attn
841
        if norm_type == "ada_norm":
842
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
843
        elif norm_type == "ada_norm_zero":
844
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
845
        elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
846
847
848
849
850
851
852
853
            self.norm1 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "rms_norm",
            )
854
        else:
Sayak Paul's avatar
Sayak Paul committed
855
856
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

Patrick von Platen's avatar
Patrick von Platen committed
857
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
858
859
860
861
862
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
863
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
864
            upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
865
            out_bias=attention_out_bias,
866
867
        )

868
        # 2. Cross-Attn
869
        if cross_attention_dim is not None or double_self_attention:
870
871
872
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
873
            if norm_type == "ada_norm":
Will Berman's avatar
Will Berman committed
874
                self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
875
            elif norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
876
877
878
879
880
881
882
883
884
885
886
                self.norm2 = AdaLayerNormContinuous(
                    dim,
                    ada_norm_continous_conditioning_embedding_dim,
                    norm_elementwise_affine,
                    norm_eps,
                    ada_norm_bias,
                    "rms_norm",
                )
            else:
                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

Patrick von Platen's avatar
Patrick von Platen committed
887
            self.attn2 = Attention(
888
                query_dim=dim,
889
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
890
891
892
893
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
894
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
895
                out_bias=attention_out_bias,
Will Berman's avatar
Will Berman committed
896
            )  # is self-attn if encoder_hidden_states is none
897
        else:
898
899
900
901
            if norm_type == "ada_norm_single":  # For Latte
                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
            else:
                self.norm2 = None
902
            self.attn2 = None
903
904

        # 3. Feed-forward
905
        if norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
906
907
908
909
910
911
912
913
            self.norm3 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "layer_norm",
            )
914

915
        elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
Will Berman's avatar
Will Berman committed
916
            self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
917
918
        elif norm_type == "layer_norm_i2vgen":
            self.norm3 = None
Sayak Paul's avatar
Sayak Paul committed
919

Suraj Patil's avatar
Suraj Patil committed
920
921
922
923
924
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
Will Berman's avatar
Will Berman committed
925
926
            inner_dim=ff_inner_dim,
            bias=ff_bias,
Suraj Patil's avatar
Suraj Patil committed
927
        )
Patrick von Platen's avatar
Patrick von Platen committed
928

929
        # 4. Fuser
930
        if attention_type == "gated" or attention_type == "gated-text-image":
931
932
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

Sayak Paul's avatar
Sayak Paul committed
933
        # 5. Scale-shift for PixArt-Alpha.
934
        if norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
935
936
            self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

937
938
939
940
        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

Suraj Patil's avatar
Suraj Patil committed
941
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
942
943
944
945
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

946
947
    def forward(
        self,
948
949
950
951
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
952
953
954
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
Will Berman's avatar
Will Berman committed
955
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
956
    ) -> torch.Tensor:
957
958
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
959
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
960

961
        # Notice that normalization is always applied before the real computation in the following blocks.
962
        # 0. Self-Attention
Sayak Paul's avatar
Sayak Paul committed
963
964
        batch_size = hidden_states.shape[0]

965
        if self.norm_type == "ada_norm":
Kashif Rasul's avatar
Kashif Rasul committed
966
            norm_hidden_states = self.norm1(hidden_states, timestep)
967
        elif self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
968
969
970
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
971
        elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
Kashif Rasul's avatar
Kashif Rasul committed
972
            norm_hidden_states = self.norm1(hidden_states)
973
        elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
974
            norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
975
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
976
977
978
979
980
981
982
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
            norm_hidden_states = self.norm1(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
        else:
            raise ValueError("Incorrect norm used")
Kashif Rasul's avatar
Kashif Rasul committed
983

Dhruv Nair's avatar
Dhruv Nair committed
984
985
986
        if self.pos_embed is not None:
            norm_hidden_states = self.pos_embed(norm_hidden_states)

987
        # 1. Prepare GLIGEN inputs
988
989
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
990

991
992
993
994
995
996
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
997

998
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
999
            attn_output = gate_msa.unsqueeze(1) * attn_output
1000
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
1001
1002
            attn_output = gate_msa * attn_output

1003
        hidden_states = attn_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
1004
1005
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
1006

1007
        # 1.2 GLIGEN Control
1008
1009
1010
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

1011
        # 3. Cross-Attention
1012
        if self.attn2 is not None:
1013
            if self.norm_type == "ada_norm":
Sayak Paul's avatar
Sayak Paul committed
1014
                norm_hidden_states = self.norm2(hidden_states, timestep)
1015
            elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
Sayak Paul's avatar
Sayak Paul committed
1016
                norm_hidden_states = self.norm2(hidden_states)
1017
            elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
1018
1019
1020
                # For PixArt norm2 isn't applied here:
                # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                norm_hidden_states = hidden_states
1021
            elif self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
1022
                norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
Sayak Paul's avatar
Sayak Paul committed
1023
1024
1025
            else:
                raise ValueError("Incorrect norm")

1026
            if self.pos_embed is not None and self.norm_type != "ada_norm_single":
Dhruv Nair's avatar
Dhruv Nair committed
1027
                norm_hidden_states = self.pos_embed(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
1028

1029
1030
1031
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
1032
                attention_mask=encoder_attention_mask,
1033
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
1034
            )
1035
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
1036

1037
        # 4. Feed-forward
1038
1039
        # i2vgen doesn't have this norm 🤷‍♂️
        if self.norm_type == "ada_norm_continuous":
Will Berman's avatar
Will Berman committed
1040
            norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
1041
        elif not self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
1042
            norm_hidden_states = self.norm3(hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
1043

1044
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
1045
1046
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

1047
        if self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
1048
1049
1050
            norm_hidden_states = self.norm2(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

1051
1052
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
1053
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
1054
        else:
1055
            ff_output = self.ff(norm_hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
1056

1057
        if self.norm_type == "ada_norm_zero":
Kashif Rasul's avatar
Kashif Rasul committed
1058
            ff_output = gate_mlp.unsqueeze(1) * ff_output
1059
        elif self.norm_type == "ada_norm_single":
Sayak Paul's avatar
Sayak Paul committed
1060
            ff_output = gate_mlp * ff_output
Kashif Rasul's avatar
Kashif Rasul committed
1061
1062

        hidden_states = ff_output + hidden_states
Sayak Paul's avatar
Sayak Paul committed
1063
1064
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
Will Berman's avatar
Will Berman committed
1065

1066
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1067
1068


1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
class LuminaFeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        hidden_size (`int`):
            The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
            hidden representations.
        intermediate_size (`int`): The intermediate dimension of the feedforward layer.
        multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
            of this value.
        ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
            dimension. Defaults to None.
    """

    def __init__(
        self,
        dim: int,
        inner_dim: int,
        multiple_of: Optional[int] = 256,
        ffn_dim_multiplier: Optional[float] = None,
    ):
        super().__init__()
        # custom hidden_size factor multiplier
        if ffn_dim_multiplier is not None:
            inner_dim = int(ffn_dim_multiplier * inner_dim)
        inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)

        self.linear_1 = nn.Linear(
            dim,
            inner_dim,
            bias=False,
        )
        self.linear_2 = nn.Linear(
            inner_dim,
            dim,
            bias=False,
        )
        self.linear_3 = nn.Linear(
            dim,
            inner_dim,
            bias=False,
        )
        self.silu = FP32SiLU()

    def forward(self, x):
        return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x))


Suraj Patil's avatar
Suraj Patil committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
@maybe_allow_in_graph
class TemporalBasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block for video like data.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        time_mix_inner_dim (`int`): The number of channels for temporal attention.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
    """

    def __init__(
        self,
        dim: int,
        time_mix_inner_dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        cross_attention_dim: Optional[int] = None,
    ):
        super().__init__()
        self.is_res = dim == time_mix_inner_dim

        self.norm_in = nn.LayerNorm(dim)

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.ff_in = FeedForward(
            dim,
            dim_out=time_mix_inner_dim,
            activation_fn="geglu",
        )

        self.norm1 = nn.LayerNorm(time_mix_inner_dim)
        self.attn1 = Attention(
            query_dim=time_mix_inner_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            cross_attention_dim=None,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None:
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = nn.LayerNorm(time_mix_inner_dim)
            self.attn2 = Attention(
                query_dim=time_mix_inner_dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(time_mix_inner_dim)
        self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = None

    def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
        self._chunk_dim = 1

    def forward(
        self,
1192
        hidden_states: torch.Tensor,
Suraj Patil's avatar
Suraj Patil committed
1193
        num_frames: int,
1194
1195
        encoder_hidden_states: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        batch_frames, seq_length, channels = hidden_states.shape
        batch_size = batch_frames // num_frames

        hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)

        residual = hidden_states
        hidden_states = self.norm_in(hidden_states)

        if self._chunk_size is not None:
Dhruv Nair's avatar
Dhruv Nair committed
1211
            hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
Suraj Patil's avatar
Suraj Patil committed
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
        else:
            hidden_states = self.ff_in(hidden_states)

        if self.is_res:
            hidden_states = hidden_states + residual

        norm_hidden_states = self.norm1(hidden_states)
        attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
        hidden_states = attn_output + hidden_states

        # 3. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = self.norm2(hidden_states)
            attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self._chunk_size is not None:
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        if self.is_res:
            hidden_states = ff_output + hidden_states
        else:
            hidden_states = ff_output

        hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
        hidden_states = hidden_states.permute(0, 2, 1, 3)
        hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)

        return hidden_states


Will Berman's avatar
Will Berman committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
class SkipFFTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        kv_input_dim: int,
        kv_input_dim_proj_use_bias: bool,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        attention_out_bias: bool = True,
    ):
        super().__init__()
        if kv_input_dim != dim:
            self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
        else:
            self.kv_mapper = None

        self.norm1 = RMSNorm(dim, 1e-06)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim,
            out_bias=attention_out_bias,
        )

        self.norm2 = RMSNorm(dim, 1e-06)

        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            out_bias=attention_out_bias,
        )

    def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}

        if self.kv_mapper is not None:
            encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))

        norm_hidden_states = self.norm1(hidden_states)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        norm_hidden_states = self.norm2(hidden_states)

        attn_output = self.attn2(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        return hidden_states


Aryan's avatar
Aryan committed
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
@maybe_allow_in_graph
class FreeNoiseTransformerBlock(nn.Module):
    r"""
    A FreeNoise Transformer block.

    Parameters:
        dim (`int`):
            The number of channels in the input and output.
        num_attention_heads (`int`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`):
            The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
        cross_attention_dim (`int`, *optional*):
            The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`):
            Activation function to be used in feed-forward.
        num_embeds_ada_norm (`int`, *optional*):
            The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (`bool`, defaults to `False`):
            Configure if the attentions should contain a bias parameter.
        only_cross_attention (`bool`, defaults to `False`):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, defaults to `False`):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, defaults to `False`):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` defaults to `False`):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
        positional_embeddings (`str`, *optional*):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
        ff_inner_dim (`int`, *optional*):
            Hidden dimension of feed-forward MLP.
        ff_bias (`bool`, defaults to `True`):
            Whether or not to use bias in feed-forward MLP.
        attention_out_bias (`bool`, defaults to `True`):
            Whether or not to use bias in attention output project layer.
        context_length (`int`, defaults to `16`):
            The maximum number of frames that the FreeNoise block processes at once.
        context_stride (`int`, defaults to `4`):
            The number of frames to be skipped before starting to process a new batch of `context_length` frames.
        weighting_scheme (`str`, defaults to `"pyramid"`):
            The weighting scheme to use for weighting averaging of processed latent frames. As described in the
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1372
1373
            Equation 9. of the [FreeNoise](https://huggingface.co/papers/2310.15169) paper, "pyramid" is the default
            setting used.
Aryan's avatar
Aryan committed
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        norm_eps: float = 1e-5,
        final_dropout: bool = False,
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
        context_length: int = 16,
        context_stride: int = 4,
        weighting_scheme: str = "pyramid",
    ):
        super().__init__()
        self.dim = dim
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.dropout = dropout
        self.cross_attention_dim = cross_attention_dim
        self.activation_fn = activation_fn
        self.attention_bias = attention_bias
        self.double_self_attention = double_self_attention
        self.norm_elementwise_affine = norm_elementwise_affine
        self.positional_embeddings = positional_embeddings
        self.num_positional_embeddings = num_positional_embeddings
        self.only_cross_attention = only_cross_attention

        self.set_free_noise_properties(context_length, context_stride, weighting_scheme)

        # We keep these boolean flags for backward-compatibility.
        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
        self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
        self.use_layer_norm = norm_type == "layer_norm"
        self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )

        self.norm_type = norm_type
        self.num_embeds_ada_norm = num_embeds_ada_norm

        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
            out_bias=attention_out_bias,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None or double_self_attention:
            self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
                out_bias=attention_out_bias,
            )  # is self-attn if encoder_hidden_states is none

        # 3. Feed-forward
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
            inner_dim=ff_inner_dim,
            bias=ff_bias,
        )

        self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]:
        frame_indices = []
        for i in range(0, num_frames - self.context_length + 1, self.context_stride):
            window_start = i
            window_end = min(num_frames, i + self.context_length)
            frame_indices.append((window_start, window_end))
        return frame_indices

    def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
Aryan's avatar
Aryan committed
1499
1500
1501
1502
        if weighting_scheme == "flat":
            weights = [1.0] * num_frames

        elif weighting_scheme == "pyramid":
Aryan's avatar
Aryan committed
1503
1504
            if num_frames % 2 == 0:
                # num_frames = 4 => [1, 2, 2, 1]
Aryan's avatar
Aryan committed
1505
1506
                mid = num_frames // 2
                weights = list(range(1, mid + 1))
Aryan's avatar
Aryan committed
1507
1508
1509
                weights = weights + weights[::-1]
            else:
                # num_frames = 5 => [1, 2, 3, 2, 1]
Aryan's avatar
Aryan committed
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
                mid = (num_frames + 1) // 2
                weights = list(range(1, mid))
                weights = weights + [mid] + weights[::-1]

        elif weighting_scheme == "delayed_reverse_sawtooth":
            if num_frames % 2 == 0:
                # num_frames = 4 => [0.01, 2, 2, 1]
                mid = num_frames // 2
                weights = [0.01] * (mid - 1) + [mid]
                weights = weights + list(range(mid, 0, -1))
            else:
                # num_frames = 5 => [0.01, 0.01, 3, 2, 1]
                mid = (num_frames + 1) // 2
                weights = [0.01] * mid
                weights = weights + list(range(mid, 0, -1))
Aryan's avatar
Aryan committed
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
        else:
            raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")

        return weights

    def set_free_noise_properties(
        self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid"
    ) -> None:
        self.context_length = context_length
        self.context_stride = context_stride
        self.weighting_scheme = weighting_scheme

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None:
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}

        # hidden_states: [B x H x W, F, C]
        device = hidden_states.device
        dtype = hidden_states.dtype

        num_frames = hidden_states.size(1)
        frame_indices = self._get_frame_indices(num_frames)
        frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme)
        frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1)
        is_last_frame_batch_complete = frame_indices[-1][1] == num_frames

        # Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length
        # For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges:
        #    [(0, 16), (4, 20), (8, 24), (10, 26)]
        if not is_last_frame_batch_complete:
            if num_frames < self.context_length:
                raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}")
            last_frame_batch_length = num_frames - frame_indices[-1][1]
            frame_indices.append((num_frames - self.context_length, num_frames))

        num_times_accumulated = torch.zeros((1, num_frames, 1), device=device)
        accumulated_values = torch.zeros_like(hidden_states)

        for i, (frame_start, frame_end) in enumerate(frame_indices):
            # The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle
            # cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or
            # essentially a non-multiple of `context_length`.
            weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end])
            weights *= frame_weights

            hidden_states_chunk = hidden_states[:, frame_start:frame_end]

            # Notice that normalization is always applied before the real computation in the following blocks.
            # 1. Self-Attention
            norm_hidden_states = self.norm1(hidden_states_chunk)

            if self.pos_embed is not None:
                norm_hidden_states = self.pos_embed(norm_hidden_states)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                attention_mask=attention_mask,
                **cross_attention_kwargs,
            )

            hidden_states_chunk = attn_output + hidden_states_chunk
            if hidden_states_chunk.ndim == 4:
                hidden_states_chunk = hidden_states_chunk.squeeze(1)

            # 2. Cross-Attention
            if self.attn2 is not None:
                norm_hidden_states = self.norm2(hidden_states_chunk)

                if self.pos_embed is not None and self.norm_type != "ada_norm_single":
                    norm_hidden_states = self.pos_embed(norm_hidden_states)

                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )
                hidden_states_chunk = attn_output + hidden_states_chunk

            if i == len(frame_indices) - 1 and not is_last_frame_batch_complete:
                accumulated_values[:, -last_frame_batch_length:] += (
                    hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:]
                )
                num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length]
            else:
                accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights
                num_times_accumulated[:, frame_start:frame_end] += weights

1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
        # TODO(aryan): Maybe this could be done in a better way.
        #
        # Previously, this was:
        # hidden_states = torch.where(
        #    num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values
        # )
        #
        # The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory
        # spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes
        # from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly
        # looked into this deeply because other memory optimizations led to more pronounced reductions.
        hidden_states = torch.cat(
            [
                torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split)
                for accumulated_split, num_times_split in zip(
                    accumulated_values.split(self.context_length, dim=1),
                    num_times_accumulated.split(self.context_length, dim=1),
                )
            ],
            dim=1,
Aryan's avatar
Aryan committed
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
        ).to(dtype)

        # 3. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self._chunk_size is not None:
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1668
class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
1669
1670
1671
1672
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
1673
1674
1675
1676
1677
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
1678
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
1679
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
Kashif Rasul's avatar
Kashif Rasul committed
1680
1681
1682
    """

    def __init__(
Will Berman's avatar
Will Berman committed
1683
1684
1685
1686
1687
1688
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
1689
        final_dropout: bool = False,
Will Berman's avatar
Will Berman committed
1690
        inner_dim=None,
1691
        bias: bool = True,
Kashif Rasul's avatar
Kashif Rasul committed
1692
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1693
        super().__init__()
Will Berman's avatar
Will Berman committed
1694
1695
        if inner_dim is None:
            inner_dim = int(dim * mult)
1696
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
1697

1698
        if activation_fn == "gelu":
1699
            act_fn = GELU(dim, inner_dim, bias=bias)
Kashif Rasul's avatar
Kashif Rasul committed
1700
        if activation_fn == "gelu-approximate":
1701
            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
1702
        elif activation_fn == "geglu":
1703
            act_fn = GEGLU(dim, inner_dim, bias=bias)
Will Berman's avatar
Will Berman committed
1704
        elif activation_fn == "geglu-approximate":
1705
            act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
1706
1707
        elif activation_fn == "swiglu":
            act_fn = SwiGLU(dim, inner_dim, bias=bias)
Aryan's avatar
Aryan committed
1708
1709
        elif activation_fn == "linear-silu":
            act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu")
Will Berman's avatar
Will Berman committed
1710
1711

        self.net = nn.ModuleList([])
1712
        # project in
1713
        self.net.append(act_fn)
1714
1715
1716
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
1717
        self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
Kashif Rasul's avatar
Kashif Rasul committed
1718
1719
1720
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
1721

1722
1723
1724
1725
    def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
1726
        for module in self.net:
1727
            hidden_states = module(hidden_states)
1728
        return hidden_states